Interpretable Machine Learning

[1]  F. Heider,et al.  An experimental study of apparent behavior , 1944 .

[2]  A. Tversky,et al.  The simulation heuristic , 1982 .

[3]  Peter J. Rousseeuw,et al.  Clustering by means of medoids , 1987 .

[4]  L. Shapley A Value for n-person Games , 1988 .

[5]  Agnar Aamodt,et al.  Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches , 1994, AI Commun..

[6]  William W. Cohen Fast Effective Rule Induction , 1995, ICML.

[7]  R. Nickerson Confirmation Bias: A Ubiquitous Phenomenon in Many Guises , 1998 .

[8]  R. Dennis Cook,et al.  Detection of Influential Observation in Linear Regression , 2000, Technometrics.

[9]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[10]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[11]  Giles Hooker,et al.  Discovering additive structure in black box functions , 2004, KDD.

[12]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[13]  Robert C. Holte,et al.  Very Simple Classification Rules Perform Well on Most Commonly Used Datasets , 1993, Machine Learning.

[14]  Bogdan E. Popescu,et al.  PREDICTIVE LEARNING VIA RULE ENSEMBLES , 2008, 0811.1679.

[15]  Erik Strumbelj,et al.  A General Method for Visualizing and Explaining Black-Box Regression Models , 2011, ICANNGA.

[16]  Johannes Fürnkranz,et al.  Foundations of Rule Learning , 2012, Cognitive Technologies.

[17]  Hadi Fanaee-T,et al.  Event labeling combining ensemble detectors and background knowledge , 2014, Progress in Artificial Intelligence.

[18]  Erik Strumbelj,et al.  Explaining prediction models and individual predictions with feature contributions , 2014, Knowledge and Information Systems.

[19]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[20]  Foster J. Provost,et al.  Explaining Data-Driven Document Classifications , 2013, MIS Q..

[21]  Joan Bruna,et al.  Intriguing properties of neural networks , 2013, ICLR.

[22]  Achim Zeileis,et al.  A Toolkit for Recursive Partytioning , 2015 .

[23]  Tiago A. Almeida,et al.  TubeSpam: Comment Spam Filtering on YouTube , 2015, 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA).

[24]  Cynthia Rudin,et al.  Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model , 2015, ArXiv.

[25]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.

[26]  Scott Lundberg,et al.  An unexpected unity among methods for interpreting model predictions , 2016, ArXiv.

[27]  Oluwasanmi Koyejo,et al.  Examples are not enough, learn to criticize! Criticism for Interpretability , 2016, NIPS.

[28]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[29]  Carlos Guestrin,et al.  Model-Agnostic Interpretability of Machine Learning , 2016, ArXiv.

[30]  Percy Liang,et al.  Understanding Black-box Predictions via Influence Functions , 2017, ICML.

[31]  Jaime S. Cardoso,et al.  Transfer Learning with Partial Observability Applied to Cervical Cancer Screening , 2017, IbPRIA.

[32]  Marie-Jeanne Lesot,et al.  Inverse Classification for Comparison-based Interpretability in Machine Learning , 2017, ArXiv.

[33]  Chris Russell,et al.  Counterfactual Explanations Without Opening the Black Box: Automated Decisions and the GDPR , 2017, ArXiv.

[34]  Ananthram Swami,et al.  Practical Black-Box Attacks against Machine Learning , 2016, AsiaCCS.

[35]  Been Kim,et al.  Towards A Rigorous Science of Interpretable Machine Learning , 2017, 1702.08608.

[36]  Margo I. Seltzer,et al.  Scalable Bayesian Rule Lists , 2016, ICML.

[37]  Martín Abadi,et al.  Adversarial Patch , 2017, ArXiv.

[38]  Przemyslaw Biecek,et al.  Explanations of model predictions with live and breakDown packages , 2018, R J..

[39]  Carlos Guestrin,et al.  Anchors: High-Precision Model-Agnostic Explanations , 2018, AAAI.

[40]  Cynthia Rudin,et al.  Model Class Reliance: Variable Importance Measures for any Machine Learning Model Class, from the "Rashomon" Perspective , 2018 .

[41]  Fabio Roli,et al.  Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning , 2018, CCS.

[42]  Logan Engstrom,et al.  Synthesizing Robust Adversarial Examples , 2017, ICML.

[43]  Tommi S. Jaakkola,et al.  On the Robustness of Interpretability Methods , 2018, ArXiv.

[44]  Zachary Chase Lipton The mythos of model interpretability , 2016, ACM Queue.

[45]  Brandon M. Greenwell,et al.  A Simple and Effective Model-Based Variable Importance Measure , 2018, ArXiv.

[46]  Trevor Hastie,et al.  Causal Interpretations of Black-Box Models , 2019, Journal of business & economic statistics : a publication of the American Statistical Association.

[47]  Kouichi Sakurai,et al.  One Pixel Attack for Fooling Deep Neural Networks , 2017, IEEE Transactions on Evolutionary Computation.

[48]  Tim Miller,et al.  Explanation in Artificial Intelligence: Insights from the Social Sciences , 2017, Artif. Intell..

[49]  Daniel W. Apley,et al.  Visualizing the effects of predictor variables in black box supervised learning models , 2016, Journal of the Royal Statistical Society: Series B (Statistical Methodology).