Selecting artificial intelligence urban models using waves of complexity

Urban land use change is a complex and dynamic process. It is therefore important to understand the complexity involved with system dynamics and choose appropriate modelling approaches. For this purpose, this paper firstly reviews how artificial intelligence (AI) approaches provide solutions to aid urban land dynamics modelling. The three dimensions that are considered pivotal for the understanding of urban dynamic processes – urban land dynamics, planning support and AI infrastructure – are defined. Once these three dimensions are clarified, it is possible to propose the different solution spaces provided by AI approaches using a graphic representation of a cube and its associated mathematical formulation. It is therefore possible to understand and define the best data model to represent the complexity of different phenomena in urban systems.

[1]  N. Pinto,et al.  A microsimulation approach for modelling the growth of small urban areas , 2006 .

[2]  Elisabete A. Silva,et al.  Artificial Intelligence Solutions for Urban Land Dynamics: A Review , 2010 .

[3]  Jack C. Wileden,et al.  Strategies for landscape ecology: An application using cellular automata models , 2008 .

[4]  Richard E. Klosterman,et al.  An Update on Planning Support Systems , 2005 .

[5]  Anthony Gar-On Yeh,et al.  Simulation of development alternatives using neural networks, cellular automata, and GIS for urban planning , 2003 .

[6]  David F. Batten,et al.  Cities and Complexity: Understanding Cities with Cellular Automata, Agent‐Based Models, and Fractals, by Michael Batty , 2007 .

[7]  B. Slack,et al.  The Geography of Transport Systems , 2006 .

[8]  P H Rees,et al.  The Estimation of Population Microdata by Using Data from Small Area Statistics and Samples of Anonymised Records , 1998, Environment & planning A.

[9]  Le Wang,et al.  Improving urban classification through fuzzy supervised classification and spectral mixture analysis , 2007 .

[10]  Roger M. Whitaker,et al.  An agent based approach to site selection for wireless networks , 2002, SAC '02.

[11]  Elisabete A. Silva,et al.  Complexity, emergence and cellular urban models: lessons learned from applying SLEUTH to two Portuguese metropolitan areas , 2005 .

[12]  Elisabete A. Silva,et al.  The DNA of our regions: artificial intelligence in regional planning , 2004 .

[13]  HE Jin-qiang,et al.  Analytical Learning-Based Intelligent Cellular Automata for Realistic and Idealized Urban Simulation , 2007 .

[14]  Jia Tao,et al.  Discovery of transition rules for geographical cellular automata by using ant colony optimization , 2007 .

[15]  Claire Baffaut,et al.  Expert System for Calibrating Swmm , 1989 .

[16]  Jie Shan,et al.  Cellular automata urban growth model calibration with genetic algorithms , 2007, 2007 Urban Remote Sensing Joint Event.

[17]  Ma Feng-wei,et al.  On-line Reinforcement Learning Control for Urban Traffic Signals , 2006, 2007 Chinese Control Conference.

[18]  Kwok-wing Chau,et al.  Particle Swarm Optimization Training Algorithm for ANNs in Stage Prediction of Shing Mun River , 2006 .

[19]  Richard J. Balling,et al.  Generating Future Land-Use and Transportation Plans for High-Growth Cities Using a Genetic Algorithm , 2004 .

[20]  Michael Batty,et al.  Urban Evolution on the Desktop: Simulation with the Use of Extended Cellular Automata , 1998 .

[21]  Slobodan P. Simonovic,et al.  Integration of heuristic knowledge with analytical tools for the selection of flood damage reduction measures , 2001 .

[22]  Stan Openshaw Some Suggestions Concerning the Development of Artificial Intelligence Tools for Spatial Modelling and Analysis in GIS , 1992 .

[23]  Daniel G. Brown,et al.  Knowledge-informed Pareto simulated annealing for multi-objective spatial allocation , 2007, Comput. Environ. Urban Syst..

[24]  Mahesh Pal,et al.  Artificial immune‐based supervised classifier for land‐cover classification , 2008 .

[25]  Byungkyu Brian Park,et al.  Application of Stochastic Optimization Method for an Urban Corridor , 2006, Proceedings of the 2006 Winter Simulation Conference.

[26]  C. Lavalle,et al.  Modelling dynamic spatial processes: simulation of urban future scenarios through cellular automata , 2003 .

[27]  Michael Batty,et al.  Decision Support, GIS and Urban Planning , 1996 .

[28]  Richard M. Fujimoto,et al.  The DoD High Level Architecture: an update , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[29]  Li Xia,et al.  Case-Based Reasoning (CBR) for Land Use Classification Using Radar Images , 2004 .

[30]  Attahiru Sule Alfa,et al.  A Network Design Algorithm Using a Stochastic Incremental Traffic Assignment Approach , 1991, Transp. Sci..

[31]  J Comas,et al.  Development of a Case-Based System for the Supervision of an Activated Sludge Process , 2001, Environmental technology.

[32]  John Stillwell,et al.  Planning Support Systems in Practice , 2003 .

[33]  Jack C. Wileden,et al.  Strategies for Landscape Ecology in Metropolitan Planning: Applications Using Cellular Automata Models , 2008 .

[34]  Jingyan Song,et al.  Topology optimization for urban traffic sensor network , 2008 .

[35]  Jay Wright Forrester,et al.  Urban Dynamics , 1969 .

[36]  Thomas Schulze,et al.  Parallel and Distributed Simulation: distributed spatio-temporal modeling and simulation , 2002, WSC '02.

[37]  Elisabete A. Silva Waves of complexity: Theory, models and practice , 2010 .

[38]  K. Piyathamrongchai,et al.  Integrating Cellular Automata and Regional Dynamics Using Gis , 2007 .

[39]  R. J. Solomonoff The search for artificial intelligence , 1968 .

[40]  J. Gareth Polhill,et al.  Agent-based land-use models: a review of applications , 2007, Landscape Ecology.

[41]  Matteo Matteucci,et al.  Ant colony optimization technique for equilibrium assignment in congested transportation networks , 2006, GECCO '06.

[42]  Ryosuke Shibasaki,et al.  CONCEPTUAL FRAMEWORK OF HUMAN SPATIAL BEHAVIOR SIMULATION BASED ON HLA , 2001 .

[43]  Ema Silva Complexity and CA and application to metropolitan areas. , 2010 .

[44]  Keith C. Clarke,et al.  A Self-Modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area , 1997 .

[45]  S. Kalogirou Expert systems and GIS: an application of land suitability evaluation , 2002 .

[46]  Ta Theo Arentze,et al.  A Heuristic Method for Land-Use Plan Generation in Planning Support Systems , 2006 .

[47]  Daniel G. Brown,et al.  Effects of Heterogeneity in Residential Preferences on an Agent-Based Model of Urban Sprawl , 2006 .

[48]  Iain Brown,et al.  Modelling future landscape change on coastal floodplains using a rule-based GIS , 2006, Environ. Model. Softw..

[49]  Frank Witlox MATISSE: a relational expert system for industrial site selection , 2003, Expert Syst. Appl..

[50]  Michael Wegener,et al.  CURRENT AND FUTURE LAND USE MODELS , 1995 .

[51]  Sang Nguyen,et al.  Spatial Allocation on a Network with Congestion , 1981 .

[52]  Steffen Straßburger,et al.  Migration of HLA into Civil Domains: Solutions and Prototypes for Transportation Applications , 1999, Simul..

[53]  António Pais Antunes,et al.  Cellular Automata and Urban Studies: a Literature Survey , 2007 .

[54]  R. Klosterman Planning Support Systems: A New Perspective on Computer-Aided Planning , 1997 .

[55]  Van-Nam Huynh,et al.  A context-dependent knowledge model for evaluation of regional environment , 2005, Environ. Model. Softw..

[56]  Henrik Madsen,et al.  Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. , 2000 .

[57]  Elisabete A. Silva,et al.  Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal , 2002 .

[58]  Giovanni A. Rabino,et al.  Urban Sprawl: A Case Study for Project Gigalopolis Using SLEUTH Model , 2006, ACRI.

[59]  Chien-Hsing Wu,et al.  KBSLUA: A knowledge-based system applied in river land use assessment , 2008, Expert Syst. Appl..

[60]  Michael Batty,et al.  Cities and complexity - understanding cities with cellular automata, agent-based models, and fractals , 2007 .

[61]  Michael Batty,et al.  Ucl Centre for Advanced Spatial Analysis Working Papers Series Key Challenges in Agent-based Modelling for Geo-spatial Simulation Paper 121 -sept 07 Key Challenges in Agent-based Modelling for Geo-spatial Simulation , 2022 .

[62]  Elisabete A. Silva,et al.  Surveying Models in Urban Land Studies , 2012 .

[63]  Michael Batty,et al.  Planning support systems and the new logic of computation , 1995 .

[64]  R. Burdekin,et al.  A dynamic spatial urban model: A generalization of Forrester's urban dynamics model☆ , 1979 .

[65]  Michael Batty,et al.  Modeling Complexity : The Limits to Prediction , 2001 .

[66]  M. Goodchild,et al.  Discrete space location-allocation solutions from genetic algorithms , 1986 .

[67]  Thomas Berger,et al.  Agent-based spatial models applied to agriculture: A simulation tool , 2001 .

[68]  Mohammed Atiquzzaman,et al.  Optimal design of water distribution network using shu2ed complex evolution , 2004 .

[69]  B. Pijanowski,et al.  Using neural networks and GIS to forecast land use changes: a Land Transformation Model , 2002 .

[70]  Kwok-wing Chau,et al.  A review on integration of artificial intelligence into water quality modelling. , 2006, Marine pollution bulletin.

[71]  Antony Stathopoulos,et al.  Adaptive hybrid fuzzy rule-based system approach for modeling and predicting urban traffic flow , 2008 .

[72]  L. Alparone,et al.  Land cover classification of urban and sub-urban areas via fuzzy nearest-mean reclustering of SAR features , 2003, 2003 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas.

[73]  Giulio Erberto Cantarella,et al.  Heuristics for urban road network design: Lane layout and signal settings , 2006, Eur. J. Oper. Res..

[74]  Stan Openshaw,et al.  Building an Automated Modeling System to Explore a Universe of Spatial Interaction Models , 2010 .