On Azadkia–Chatterjee’s conditional dependence coefficient

In recent work, Azadkia and Chatterjee (2021) laid out an ingenious approach to defining consistent measures of conditional dependence. Their fully nonparametric approach forms statistics based on ranks and nearest neighbor graphs. The appealing nonparametric consistency of the resulting conditional dependence measure and the associated empirical conditional dependence coefficient has quickly prompted follow-up work that seeks to study its statistical efficiency. In this paper, we take up the framework of conditional randomization tests (CRT) for conditional independence and conduct a power analysis that considers two types of local alternatives, namely, parametric quadratic mean differentiable alternatives and nonparametric H\"older smooth alternatives. Our local power analysis shows that conditional independence tests using the Azadkia--Chatterjee coefficient remain inefficient even when aided with the CRT framework, and serves as motivation to develop variants of the approach; cf. Lin and Han (2022b). As a byproduct, we resolve a conjecture of Azadkia and Chatterjee by proving central limit theorems for the considered conditional dependence coefficients, with explicit formulas for the asymptotic variances.

[1]  Zhexiao Lin,et al.  Limit theorems of Chatterjee's rank correlation , 2022, ArXiv.

[2]  Fang Han,et al.  On boosting the power of Chatterjee’s rank correlation , 2021, Biometrika.

[3]  Runze Li,et al.  A Distribution Free Conditional Independence Test with Applications to Causal Discovery , 2021, J. Mach. Learn. Res..

[4]  Carlos Matrán,et al.  Distribution and quantile functions, ranks and signs in dimension d: A measure transportation approach , 2021, The Annals of Statistics.

[5]  Rajen Dinesh Shah,et al.  Conditional independence testing in Hilbert spaces with applications to functional data analysis , 2021, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[6]  B. Sen,et al.  Kernel Partial Correlation Coefficient - a Measure of Conditional Dependence , 2020, J. Mach. Learn. Res..

[7]  B. Sen,et al.  Measuring Association on Topological Spaces Using Kernels and Geometric Graphs , 2020, 2010.01768.

[8]  M. Drton,et al.  On the power of Chatterjee’s rank correlation , 2020, Biometrika.

[9]  P. Bickel,et al.  Correlations with tailored extremal properties , 2020, 2008.10177.

[10]  M. Drton,et al.  On universally consistent and fully distribution-free rank tests of vector independence , 2020, The Annals of Statistics.

[11]  Lasse Petersen,et al.  Testing Conditional Independence via Quantile Regression Based Partial Copulas , 2020, Journal of machine learning research.

[12]  T. Klein,et al.  Global sensitivity analysis: A novel generation of mighty estimators based on rank statistics , 2020, Bernoulli.

[13]  L. Wasserman,et al.  Minimax optimal conditional independence testing , 2020, The Annals of Statistics.

[14]  S. Chatterjee,et al.  A simple measure of conditional dependence , 2019, The Annals of Statistics.

[15]  S. Chatterjee A New Coefficient of Correlation , 2019, Journal of the American Statistical Association.

[16]  M. Drton,et al.  Distribution-Free Consistent Independence Tests via Center-Outward Ranks and Signs , 2019, Journal of the American Statistical Association.

[17]  Bodhisattva Sen,et al.  Multivariate Rank-Based Distribution-Free Nonparametric Testing Using Measure Transportation , 2019, Journal of the American Statistical Association.

[18]  Martin Wainwright,et al.  Handbook of Graphical Models , 2018 .

[19]  Thomas B. Berrett,et al.  The conditional permutation test for independence while controlling for confounders , 2018, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[20]  Rajen Dinesh Shah,et al.  The hardness of conditional independence testing and the generalised covariance measure , 2018, The Annals of Statistics.

[21]  Daniel M. Kane,et al.  Testing Conditional Independence of Discrete Distributions , 2017, 2018 Information Theory and Applications Workshop (ITA).

[22]  Jakob Runge,et al.  Conditional independence testing based on a nearest-neighbor estimator of conditional mutual information , 2017, AISTATS.

[23]  Eric V. Strobl,et al.  Approximate Kernel-Based Conditional Independence Tests for Fast Non-Parametric Causal Discovery , 2017, Journal of Causal Inference.

[24]  Lucas Janson,et al.  Panning for gold: ‘model‐X’ knockoffs for high dimensional controlled variable selection , 2016, 1610.02351.

[25]  Thomas B. Berrett,et al.  Efficient multivariate entropy estimation via $k$-nearest neighbour distances , 2016, The Annals of Statistics.

[26]  Luc Devroye,et al.  Lectures on the Nearest Neighbor Method , 2015 .

[27]  Heping Zhang,et al.  Conditional Distance Correlation , 2015, Journal of the American Statistical Association.

[28]  B. Bhattacharya A general asymptotic framework for distribution‐free graph‐based two‐sample tests , 2015, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[29]  H. White,et al.  Testing Conditional Independence Via Empirical Likelihood , 2014 .

[30]  Bernhard Schölkopf,et al.  A Permutation-Based Kernel Conditional Independence Test , 2014, UAI.

[31]  Maria L. Rizzo,et al.  Partial Distance Correlation with Methods for Dissimilarities , 2013, 1310.2926.

[32]  Maria L. Rizzo,et al.  Energy statistics: A class of statistics based on distances , 2013 .

[33]  H. Dette,et al.  A Copula‐Based Non‐parametric Measure of Regression Dependence , 2013 .

[34]  Barnabás Póczos,et al.  Nonparametric Estimation of Conditional Information and Divergences , 2012, AISTATS.

[35]  I. Gijbels,et al.  Estimation of a Conditional Copula and Association Measures , 2011 .

[36]  Bernhard Schölkopf,et al.  Kernel-based Conditional Independence Test and Application in Causal Discovery , 2011, UAI.

[37]  Wicher P. Bergsma,et al.  Nonparametric Testing of Conditional Independence by Means of the Partial Copula , 2010, 1101.4607.

[38]  Tzee-Ming Huang Testing conditional independence using maximal nonlinear conditional correlation , 2010, 1010.3843.

[39]  Bernhard Schölkopf,et al.  Causal Inference on Discrete Data Using Additive Noise Models , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Bernhard Schölkopf,et al.  Nonlinear causal discovery with additive noise models , 2008, NIPS.

[41]  Alexandre B. Tsybakov,et al.  Introduction to Nonparametric Estimation , 2008, Springer series in statistics.

[42]  H. White,et al.  A NONPARAMETRIC HELLINGER METRIC TEST FOR CONDITIONAL INDEPENDENCE , 2008, Econometric Theory.

[43]  Bernhard Schölkopf,et al.  Kernel Measures of Conditional Dependence , 2007, NIPS.

[44]  Kyungchul Song Testing Conditional Independence via Rosenblatt Transforms , 2007, 0911.3787.

[45]  W. Kössler,et al.  The Asymptotic Efficacies and Relative Efficiencies of Various Linear Rank Tests for Independence , 2006 .

[46]  S. Boucheron,et al.  Moment inequalities for functions of independent random variables , 2005, math/0503651.

[47]  H. Gies,et al.  Renormalization flow of Yang-Mills propagators , 2004, hep-ph/0408089.

[48]  Louis H. Y. Chen,et al.  Normal approximation under local dependence , 2004, math/0410104.

[49]  H. White,et al.  A Consistent Characteristic-Function-Based Test for Conditional Independence , 2003 .

[50]  N. Henze,et al.  On the multivariate runs test , 1999 .

[51]  Daphne Koller,et al.  Toward Optimal Feature Selection , 1996, ICML.

[52]  Regina Y. Liu,et al.  A Quality Index Based on Data Depth and Multivariate Rank Tests , 1993 .

[53]  N. Henze A MULTIVARIATE TWO-SAMPLE TEST BASED ON THE NUMBER OF NEAREST NEIGHBOR TYPE COINCIDENCES , 1988 .

[54]  N. Henze On the fraction of random points by specified nearest-neighbour interrelations and degree of attraction , 1987, Advances in Applied Probability.

[55]  Barry C. Arnold,et al.  p-Norm bounds on the expectation of the maximum of a possibly dependent sample , 1985 .

[56]  P. Bickel,et al.  Sums of Functions of Nearest Neighbor Distances, Moment Bounds, Limit Theorems and a Goodness of Fit Test , 1983 .

[57]  A. Dawid Conditional Independence for Statistical Operations , 1980 .

[58]  A. Dawid Conditional Independence in Statistical Theory , 1979 .

[59]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .

[60]  W. Hoeffding The Large-Sample Power of Tests Based on Permutations of Observations , 1952 .

[61]  J. Wolfowitz,et al.  On a Test Whether Two Samples are from the Same Population , 1940 .

[62]  László Györfi,et al.  A nearest neighbor estimate of the residual variance , 2018 .

[63]  E. Candès,et al.  Supplementary material to “Panning for gold: Model-X knock-offs for high-dimensional controlled variable selection” , 2017 .

[64]  S. Li Concise Formulas for the Area and Volume of a Hyperspherical Cap , 2011 .

[65]  Wicher P. Bergsma,et al.  Testing conditional independence for continuous random variables , 2004 .

[66]  L. Devroye THE EXPECTED SIZE OF SOME GRAPHS IN COMPUTATIONAL GEOMETRY , 1988 .

[67]  R. Patterson,et al.  Strong laws of large numbers for triangular arrays of exchangeable random variables , 1985 .

[68]  J. Friedman,et al.  Multivariate generalizations of the Wald--Wolfowitz and Smirnov two-sample tests , 1979 .

[69]  J. Kuelbs Probability on Banach spaces , 1978 .