Effect of Applied Pressure on Microstructure and Hardness of Linear Friction Welded Martensitic Steel

[1]  S. Tsutsumi,et al.  Microstructure, mechanical properties and fatigue behaviors of linear friction welded weathering steels , 2022, International Journal of Fatigue.

[2]  Motomichi Yamamoto,et al.  Microstructure evolution and hardness distribution of linear friction welded AA5052-H34 joint and AA5083-O joint , 2022, Journal of Materials Research and Technology.

[3]  Motomichi Yamamoto,et al.  Effect of applied pressure on microstructure and mechanical properties of linear friction welded AA1050-H24 and AA5052-H34 joints , 2021, Science and Technology of Welding and Joining.

[4]  H. Fujii,et al.  A novel pressure-controlled joule-heat forge welding method to fabricate sound carbon steel joints below the A1 point , 2021, Journal of Manufacturing Processes.

[5]  K. Ushioda,et al.  Flat hardness distribution in AA6061 joints by linear friction welding , 2021, Scientific Reports.

[6]  S. Tsutsumi,et al.  Investigation of residual stress within linear friction welded steel sheets by alternating pressure via X-ray diffraction and contour method approaches , 2021 .

[7]  K. Ushioda,et al.  Linear friction welding of Ti-6Al-4V alloy fabricated below β-phase transformation temperature , 2021 .

[8]  H. Fujii,et al.  Ultralow rotation speed produces high-quality joint in dissimilar friction welding of Ti–6Al–4V alloy and SUS316L stainless steel , 2021 .

[9]  Kamalesh Kumar,et al.  Experimental investigation of Mechanical properties in friction welding parameters for dis-similar metals (SS-304 & SS-410) , 2020 .

[10]  Wenya Li,et al.  Linear friction welding of a beta titanium alloy: experimental investigations on microstructure evolution and mechanical properties , 2020 .

[11]  Hidetoshi Fujii,et al.  New Joining Methods for (Iron-Based) Automotive Materials: ISMA-Results , 2020 .

[12]  H. Fujii,et al.  Microstructure control of medium carbon steel joints by low-temperature linear friction welding , 2019, Science and Technology of Welding and Joining.

[13]  Wenya Li,et al.  The sensitivity analysis of microstructure and mechanical properties to welding parameters for linear friction welded rail steel joints , 2019, Materials Science and Engineering: A.

[14]  Wenya Li,et al.  Linear friction welding of a solid-solution strengthened Ni-based superalloy: Microstructure evolution and mechanical properties studies , 2018, Journal of Manufacturing Processes.

[15]  H. Fujii,et al.  Stabilization of austenite in low carbon Cr–Mo steel by high speed deformation during friction stir welding , 2016 .

[16]  M. Jahazi,et al.  A Review on Inertia and Linear Friction Welding of Ni-Based Superalloys , 2015, Metallurgical and Materials Transactions A.

[17]  Paul A. Colegrove,et al.  Modelling the influence of the process inputs on the removal of surface contaminants from Ti-6Al-4V linear friction welds , 2015 .

[18]  Wei Xu,et al.  Increase of martensite start temperature after small deformation of austenite , 2014 .

[19]  P. Wanjara,et al.  Linear friction welding of a near-β titanium alloy , 2012 .

[20]  M. Thuvander,et al.  Microstructures and hardness of as-quenched martensites (0.10.5%C) , 2011 .

[21]  Moataz M. Attallah,et al.  Effect of the forging pressure on the microstructure and residual stress development in Ti–6Al–4V linear friction welds , 2009 .

[22]  M. Preuss,et al.  Importance of crystal orientation in linear friction joining of single crystal to polycrystalline nickel-based superalloys , 2008 .

[23]  M. Jahazi,et al.  Multi‐Scale Analysis of IN‐718 Microstructure Evolution During Linear Friction Welding , 2008 .

[24]  H. Liao,et al.  Microstructure Evolution and Mechanical Properties of Linear Friction Welded 45 Steel Joint , 2007 .

[25]  M. Preuss,et al.  Texture development in Ti-6Al-4V linear friction welds , 2007 .

[26]  P. Wanjara,et al.  Linear friction welding of Ti-6Al-4V: Processing, microstructure, and mechanical-property inter-relationships , 2005 .

[27]  T. Tsuchiyama,et al.  Effect of Grain Refinement on Thermal Stability of Metastable Austenitic Steel , 2004 .

[28]  Gregory B Olson,et al.  Kinetics of F.C.C. → B.C.C. heterogeneous martensitic nucleation—I. The critical driving force for athermal nucleation , 1994 .

[29]  F. Bundy Pressure—Temperature Phase Diagram of Iron to 200 kbar, 900°C , 1965 .