Convex Duality in Stochastic Optimization and Mathematical Finance

This paper proposes a general duality framework for the problem of minimizing a convex integral functional over a space of stochastic processes adapted to a given filtration. The framework unifies many well-known duality frameworks from operations research and mathematical finance. The unification allows the extension of some useful techniques from these two fields to a much wider class of problems. In particular, combining certain finite-dimensional techniques from convex analysis with measure theoretic techniques from mathematical finance, we are able to close the duality gap in some situations where traditional topological arguments fail.

[1]  J. Komlos A generalization of a problem of Steinhaus , 1967 .

[2]  W. Schachermayer The Fundamental Theorem of Asset Pricing under Proportional Transaction Costs in Finite Discrete Time , 2004 .

[3]  I. Karatzas,et al.  Optimal Consumption from Investment and Random Endowment in Incomplete Semimartingale Markets , 2001, 0706.0051.

[4]  I. Klein,et al.  DUALITY IN OPTIMAL INVESTMENT AND CONSUMPTION PROBLEMS WITH MARKET FRICTIONS , 2007 .

[5]  W. Schachermayer,et al.  The asymptotic elasticity of utility functions and optimal investment in incomplete markets , 1999 .

[6]  George B. Dantzig,et al.  Linear Programming Under Uncertainty , 2004, Manag. Sci..

[7]  Walter Schachermayer,et al.  The Mathematics of Arbitrage , 2006 .

[8]  R. Rockafellar Integrals which are convex functionals. II , 1968 .

[9]  Ivan P. Gavrilyuk,et al.  Variational analysis in Sobolev and BV spaces , 2007, Math. Comput..

[10]  Yuri Kabanov,et al.  Hedging and liquidation under transaction costs in currency markets , 1999, Finance Stochastics.

[11]  Martin B. Haugh,et al.  Pricing American Options: A Duality Approach , 2001, Oper. Res..

[12]  R. Tyrrell Rockafellar Conjugate Duality and Optimization , 1974 .

[13]  C. Choirat,et al.  A FUNCTIONAL VERSION OF THE BIRKHOFF ERGODIC THEOREM FOR A NORMAL INTEGRAND: A VARIATIONAL APPROACH , 2003 .

[14]  Walter Schachermayer,et al.  A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time , 1992 .

[15]  Michael A. H. Dempster,et al.  Asset Pricing and Hedging in Financial Markets with Transaction Costs: An Approach Based on the Von Neumann–Gale Model , 2006 .

[16]  Mark H. A. Davis,et al.  A Deterministic Approach To Stochastic Optimal Control With Application To Anticipative Control , 1992 .

[17]  Teemu Pennanen,et al.  SUPERHEDGING IN ILLIQUID MARKETS , 2008, 0807.2962.

[18]  Dmitry B. Rokhlin The Kreps-Yan theorem for L∞ , 2005, Int. J. Math. Math. Sci..

[19]  Teemu Pennanen,et al.  Arbitrage and deflators in illiquid markets , 2008, Finance Stochastics.

[20]  Mark H. A. Davis,et al.  A deterministic approach to optimal stopping with application to a prophet inequality , 1993 .

[21]  Walter Schachermayer,et al.  Arbitrage and State Price Deflators in a General Intertemporal Framework , 2005 .

[22]  Y. Kabanov,et al.  Markets with transaction costs , 2010 .

[23]  Jakša Cvitanić,et al.  Convex Duality in Constrained Portfolio Optimization , 1992 .

[24]  Lisa A. Korf,et al.  Stochastic programming duality: ∞ multipliers for unbounded constraints with an application to mathematical finance , 2004, Math. Program..

[25]  R. Wets,et al.  PRICING CONTINGENT CLAIMS : A COMPUTATIONAL COMPATIBLE APPROACH , 2022 .

[26]  R. Rockafellar,et al.  Nonanticipativity and L1-martingales in stochastic optimization problems , 1976 .

[27]  Roger J.-B. Wets,et al.  On the Relation between Stochastic and Deterministic Optimization , 1975 .

[28]  Sara Biagini,et al.  A Unified Framework for Utility Maximization Problems: an Orlicz space approach , 2007, 0806.2582.

[29]  Alan J. King,et al.  Duality and martingales: a stochastic programming perspective on contingent claims , 2002, Math. Program..

[30]  Kerry Back,et al.  The shadow price of information in continuous time decision problems , 1987 .

[31]  R. Rockafellar,et al.  Integral functionals, normal integrands and measurable selections , 1976 .

[32]  E. Beale ON MINIMIZING A CONVEX FUNCTION SUBJECT TO LINEAR INEQUALITIES , 1955 .

[33]  Dimitri P. Bertsekas,et al.  Necessary and sufficient conditions for existence of an optimal portfolio , 1974 .

[34]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[35]  Robert C. Dalang,et al.  Equivalent martingale measures and no-arbitrage in stochastic securities market models , 1990 .

[36]  E. Balder Infinite-dimensional extension of a theorem of Komlós , 1989 .

[37]  Yuri Kabanov,et al.  A teacher's note on no-arbitrage criteria , 2001 .

[38]  S. Pliska Introduction to Mathematical Finance: Discrete Time Models , 1997 .

[39]  L. Rogers Monte Carlo valuation of American options , 2002 .

[40]  Teemu Pennanen,et al.  Hedging of Claims with Physical Delivery under Convex Transaction Costs , 2008, SIAM J. Financial Math..

[41]  C. Castaing,et al.  Convex analysis and measurable multifunctions , 1977 .

[42]  Sara Biagini Expected Utility Maximization: Duality Methods , 2010 .

[43]  R. Rockafellar,et al.  The Optimal Recourse Problem in Discrete Time: $L^1 $-Multipliers for Inequality Constraints , 1978 .

[44]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[45]  F. Hiai,et al.  Integrals, conditional expectations, and martingales of multivalued functions , 1977 .

[46]  Alexandre Grothendieck,et al.  Topological vector spaces , 1973 .

[47]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[48]  R. T. Rockafellar,et al.  Measures as Lagrange multipliers in multistage stochastic programming , 1977 .

[49]  Sara Biagini,et al.  Expected utility maximization: the dual approach , 2010 .

[50]  Mark H. A. Davis Dynamic optimization: a grand unification , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[51]  R. T. Rockafellart,et al.  Deterministic and stochastic optimization problems of bolza type in discrete time , 1983 .