Adaptive Intelligence Applied to Numerical Optimisation

The article presents modification strategies' theoretical comparison and experimental results achieved by adaptive heuristics applied to numerical optimisation of several non-constraint test functions. The aims of the study are to identify and compare how adaptive search heuristics behave within heterogeneous search space without retuning of the search parameters. The achieved results are summarised and analysed, which could be used for comparison to other methods and further investigation.

[1]  Peter J. Angeline,et al.  Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences , 1998, Evolutionary Programming.

[2]  R. Storn,et al.  Differential Evolution , 2004 .

[3]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[4]  Russell C. Eberhart,et al.  Comparison between Genetic Algorithms and Particle Swarm Optimization , 1998, Evolutionary Programming.

[5]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[6]  W. Macready,et al.  No Free Lunch Theorems for , 1995 .

[7]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[8]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[9]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[10]  Guy Littlefair,et al.  Free Search - a comparative analysis , 2005, Inf. Sci..

[11]  A. E. Eiben,et al.  Evolutionary Programming VII , 1998, Lecture Notes in Computer Science.

[12]  福見 稔 "1995 IEEE International Conference on Neural Networks"に出席して , 1996 .

[13]  Kalin Penev Free Search of real value or how to make computers think , 2008 .

[14]  R. Eberhart,et al.  PARAMETER SELECTION IN PARAMETER SELECTION IN PROGRAMMING VII , 1998 .

[15]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[16]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[17]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[18]  Riccardo Poli,et al.  Particle Swarm Optimisation , 2011 .

[19]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[20]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.