Bayesian inference with probabilistic population codes

Recent psychophysical experiments indicate that humans perform near-optimal Bayesian inference in a wide variety of tasks, ranging from cue integration to decision making to motor control. This implies that neurons both represent probability distributions and combine those distributions according to a close approximation to Bayes' rule. At first sight, it would seem that the high variability in the responses of cortical neurons would make it difficult to implement such optimal statistical inference in cortical circuits. We argue that, in fact, this variability implies that populations of neurons automatically represent probability distributions over the stimulus, a type of code we call probabilistic population codes. Moreover, we demonstrate that the Poisson-like variability observed in cortex reduces a broad class of Bayesian inference to simple linear combinations of populations of neural activity. These results hold for arbitrary probability distributions over the stimulus, for tuning curves of arbitrary shape and for realistic neuronal variability.

[1]  H B Barlow,et al.  PATTERN RECOGNITION AND THE RESPONSES OF SENSORY NEURONS * , 1969, Annals of the New York Academy of Sciences.

[2]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[3]  James J. Clark,et al.  Data Fusion for Sensory Information Processing Systems , 1990 .

[4]  T. Poggio A theory of how the brain might work. , 1990, Cold Spring Harbor symposia on quantitative biology.

[5]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[6]  Edward H. Adelson,et al.  Probability distributions of optical flow , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Paul Antoine Salin,et al.  Spatial and temporal coherence in cortico-cortical connections: a cross-correlation study in areas 17 and 18 in the cat. , 1992, Visual neuroscience.

[8]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[9]  James M. Bower,et al.  Computation and Neural Systems , 2014, Springer US.

[10]  B. Stein,et al.  The Merging of the Senses , 1993 .

[11]  P. Földiák,et al.  The ‘Ideal Homunculus’: Statistical Inference from Neural Population Responses , 1993 .

[12]  K. H. Britten,et al.  Responses of neurons in macaque MT to stochastic motion signals , 1993, Visual Neuroscience.

[13]  H Sompolinsky,et al.  Simple models for reading neuronal population codes. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Jacek M. Zurada,et al.  Computational Intelligence: Imitating Life , 1994 .

[15]  Herman P. Snippe,et al.  Parameter Extraction from Population Codes: A Critical Assessment , 1996, Neural Computation.

[16]  T. Sanger,et al.  Probability density estimation for the interpretation of neural population codes. , 1996, Journal of neurophysiology.

[17]  Alexander J. Smola,et al.  Neural Information Processing Systems , 1997, NIPS 1997.

[18]  Michele A. Basso,et al.  Modulation of neuronal activity by target uncertainty , 1997, Nature.

[19]  D. Knill,et al.  Discrimination of planar surface slant from texture: human and ideal observers compared , 1998, Vision Research.

[20]  Alexandre Pouget,et al.  Probabilistic Interpretation of Population Codes , 1996, Neural Computation.

[21]  Yves Burnod,et al.  Bayesian inference in populations of cortical neurons: a model of motion integration and segmentation in area MT , 1999, Biological Cybernetics.

[22]  Michael L. Platt,et al.  Neural correlates of decision variables in parietal cortex , 1999, Nature.

[23]  J. J. Denier van der Gon,et al.  Integration of proprioceptive and visual position-information , 1999 .

[24]  A. Pouget,et al.  Reading population codes: a neural implementation of ideal observers , 1999, Nature Neuroscience.

[25]  Thomas J. Anastasio,et al.  Using Bayes' Rule to Model Multisensory Enhancement in the Superior Colliculus , 2000, Neural Computation.

[26]  D. Ferster,et al.  The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. , 2000, Science.

[27]  Si Wu,et al.  Population Coding with Correlation and an Unfaithful Model , 2001, Neural Computation.

[28]  W. Newsome,et al.  Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. , 2001, Journal of neurophysiology.

[29]  J. Gold,et al.  Neural computations that underlie decisions about sensory stimuli , 2001, Trends in Cognitive Sciences.

[30]  David J. Fleet,et al.  Probabilistic Models of the Brain : Perception and Neural Function , 2001 .

[31]  A. Pouget,et al.  Efficient computation and cue integration with noisy population codes , 2001, Nature Neuroscience.

[32]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.

[33]  S. Gepshtein,et al.  Viewing Geometry Determines How Vision and Haptics Combine in Size Perception , 2003, Current Biology.

[34]  C. Stevens Neurotransmitter Release at Central Synapses , 2003, Neuron.

[35]  Peter Dayan,et al.  Doubly Distributional Population Codes: Simultaneous Representation of Uncertainty and Multiplicity , 2003, Neural Computation.

[36]  Emilio Salinas,et al.  Vector reconstruction from firing rates , 1994, Journal of Computational Neuroscience.

[37]  R. Freeman,et al.  Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast , 2004, Experimental Brain Research.

[38]  A. Pouget,et al.  Tuning curve sharpening for orientation selectivity: coding efficiency and the impact of correlations , 2004, Nature Neuroscience.

[39]  Rajesh P. N. Rao Bayesian Computation in Recurrent Neural Circuits , 2004, Neural Computation.

[40]  Konrad Paul Kording,et al.  Bayesian integration in sensorimotor learning , 2004, Nature.

[41]  T. Stanford,et al.  Evaluating the Operations Underlying Multisensory Integration in the Cat Superior Colliculus , 2005, The Journal of Neuroscience.

[42]  M. Wallace,et al.  Superior colliculus neurons use distinct operational modes in the integration of multisensory stimuli. , 2005, Journal of neurophysiology.

[43]  Anthony J. Movshon,et al.  Optimal representation of sensory information by neural populations , 2006, Nature Neuroscience.

[44]  D. Snodderly,et al.  High response reliability of neurons in primary visual cortex (V1) of alert, trained monkeys. , 2006, Cerebral cortex.

[45]  Eero P. Simoncelli,et al.  Noise characteristics and prior expectations in human visual speed perception , 2006, Nature Neuroscience.

[46]  Peter Dayan,et al.  Fast Population Coding , 2007, Neural Computation.

[47]  W. Richards,et al.  Perception as Bayesian Inference , 2008 .

[48]  R. K. Simpson Nature Neuroscience , 2022 .