Glass-forming ability of butanediol isomers

In this study, the thermal behavior of butanediol isomers is investigated for temperatures ranging from 103 to 303 K using differential scanning calorimetry, complemented, when necessary, by polarized light thermal microscopy. The butanediol isomers display quite different thermal behaviors: for 1,2- and 1,3-isomers, glass transition is the only thermal event observed; for 1,4-butanediol, crystallization occurs on cooling even at a high scanning rate and no glass formation was detected; and for the 2,3-isomer, glass or crystal formation is dependent on the experimental conditions employed. The glass-forming ability of the isomers is correlated with data available on their molecular symmetry.

[1]  P. Claudy,et al.  Study of the thermal behaviour of 1,3-propanediol and its aqueous solutions , 1998 .

[2]  Hajime Tanaka Relationship among glass-forming ability, fragility, and short-range bond ordering of liquids , 2005 .

[3]  R. L. Sutton Critical cooling rates to avoid ice crystallization in solutions of cryoprotective agents , 1991 .

[4]  R. Fausto,et al.  Stepwise conformational cooling towards a single isomeric state in the four internal rotors system 1,2-butanediol. , 2006, Physical chemistry chemical physics : PCCP.

[5]  W. Kauzmann The Nature of the Glassy State and the Behavior of Liquids at Low Temperatures. , 1948 .

[6]  H. Diehl,et al.  Butanediols, Butenediol, and Butynediol , 2000, Ullmann's Encyclopedia of Industrial Chemistry.

[7]  P. Claudy,et al.  Vitrification and crystallization in the R(−)1,2-propanediol-S(+)1,2-propanediol system , 1995 .

[8]  K. Mendelssohn States of aggregation , 1969 .

[9]  P. Boutron Cryoprotection of red blood cells by a 2,3-butanediol containing mainly the levo and dextro isomers. , 1992, Cryobiology.

[10]  P. Mehl,et al.  Glass-forming tendency and stability of the amorphous state in the aqueous solutions of linear polyalcohols with four carbons: II. Ternary systems with water, 1,2-propanediol or 1,3-butanediol or 2,3-butanediol , 1987 .

[11]  J. S. Redinha,et al.  Molecular Structure of Butanediol Isomers in Gas and Liquid States: Combination of DFT Calculations and Infrared Spectroscopy Studies , 2003 .

[12]  W. V. Steele,et al.  Heat capacities, enthalpy increments, and derived thermodynamic functions for pyrazine between the temperatures 5 K and 380 K , 2002 .

[13]  M. Zábranský,et al.  Estimation of the Heat Capacities of Organic Liquids as a Function of Temperature Using Group Additivity: An Amendment , 2004 .

[14]  Polymorphism of pindolol, 1-(1H-indol-4-yloxyl)-3-isopropylamino-propan-2-ol. , 2004, International journal of pharmaceutics.

[15]  P. Boutron Levo- and dextro-2,3-Butanediol and their racemic mixture: Very efficient solutes for vitrification , 1990 .

[16]  T. Hua,et al.  Glass transition and enthalpy relaxation of ethylene glycol and its aqueous solution , 2005 .

[17]  R. Fausto,et al.  Conformational study of monomeric 2,3-butanediols by matrix-isolation infrared spectroscopy and DFT calculations. , 2006, The journal of physical chemistry. A.

[18]  Hajime Tanaka,et al.  Frustration on the way to crystallization in glass , 2006 .

[19]  P. Mehl,et al.  Theoretical prediction of devitrification tendency: determination of critical warming rates without using finite expansions. , 1990, Cryobiology.

[20]  J. Dudowicz,et al.  The glass transition temperature of polymer melts. , 2005, The journal of physical chemistry. B.

[21]  C. Angell,et al.  Test of the entropy basis of the Vogel-Tammann-Fulcher equation. Dielectric relaxation of polyalcohols near Tg , 1982 .

[22]  H. Kanno A simple derivation of the empirical rule TGTM = 23 , 1981 .

[23]  R. Meister,et al.  A study of viscoelastic properties of butanediol‐1,3 using optical digital correlation spectroscopy , 1977 .

[24]  K. Takeda,et al.  Thermodynamic investigation of glass transition in binary polyalcohols , 1998 .

[25]  Li-Min Wang,et al.  Fragility and thermodynamics in nonpolymeric glass-forming liquids. , 2006, The Journal of chemical physics.

[26]  P. Mehl,et al.  Glass-forming tendency and stability of the amorphous state in the aqueous solutions of linear polyalcohols with four carbons. I. Binary systems water-polyalcohol. , 1986, Cryobiology.

[27]  Pablo G. Debenedetti,et al.  Metastable Liquids: Concepts and Principles , 1996 .

[28]  O. Yamamuro,et al.  Calorimetric study of ethylene glycol and 1,3-propanediol: configurational entropy in supercooled polyalcohols , 1999 .

[29]  P. Boutron Glass-Forming Tendency and Stability of the Amorphous State in Solutions of a 2,3-Butanediol Containing Mainly the Levo and Dextro Isomers in Water, Buffer, and Euro-Collins , 1993 .

[30]  Rui Fausto,et al.  Structure of isolated 1,4-butanediol: combination of MP2 calculations, NBO analysis, and matrix-isolation infrared spectroscopy. , 2008, The journal of physical chemistry. A.

[31]  M. Eusébio,et al.  Enthalpy of vaporisation of butanediol isomers , 2003 .

[32]  N. Birge,et al.  Specific-heat spectroscopy of glycerol and propylene glycol near the glass transition. , 1986, Physical review. B, Condensed matter.

[33]  James S. Chickos,et al.  Reference Materials for Calorimetry and Differential Thermal Analysis , 1999 .