Independence numbers and chromatic numbers of the random subgraphs of some distance graphs

This work is concerned with the Nelson-Hadwiger classical problem of finding the chromatic numbers of distance graphs in n. Most consideration is given to the class of graphs G(n, r, s)= (V(n, r), E(n, r, s)) defined as follows: where (x, y) is the Euclidean inner product. In particular, the chromatic number of G(n, 3, 1) was recently found by Balogh, Kostochka and Raigorodskii. The objects of the study are the random subgraphs (G(n, r, s), p) whose edges are independently taken from the set E(n, r, s), each with probability p. The independence number and the chromatic number of such graphs are estimated both from below and from above. In the case when r - s is a prime power and r ≤ 2s + 1, the order of growth of α((G(n, r, s), p)) and χ((G(n, r, s), p)) is established. Bibliography: 51 titles.

[1]  Peter Frankl,et al.  Intersection theorems with geometric consequences , 1981, Comb..

[2]  Андрей Михайлович Райгородский,et al.  Проблема Борсука и хроматические числа некоторых метрических пространств@@@Borsuk's problem and the chromatic numbers of some metric spaces , 2001 .

[3]  Андрей Михайлович Райгородский,et al.  Проблемы Борсука и Грюнбаума для решетчатых многогранников@@@The problems of Borsuk and Grünbaum on lattice polytopes , 2005 .

[4]  Андрей Михайлович Райгородский,et al.  Проблема Эрдеша - Хадвигера и хроматические числа конечных геометрических графов@@@The Erdős - Hadwiger problem and the chromatic numbers of finite geometric graphs , 2005 .

[5]  Alexander E. Guterman,et al.  On independence numbers of distance graphs with vertices in {-1,0,1}n: estimates, conjectures, and applications to the Nelson–Erdős–Hadwiger problem and the Borsuk problem , 2010 .

[6]  Vojtech Rödl,et al.  On a Packing and Covering Problem , 1985, Eur. J. Comb..

[7]  Andrei M. Raigorodskii,et al.  On the chromatic numbers of spheres in ℝn , 2012, Comb..

[8]  B. Bollobás The evolution of random graphs , 1984 .

[9]  Andrei Mikhailovich Raigorodskii The Erdõs-Hadwiger problem and the chromatic numbers of finite geometric graphs , 2003 .

[10]  Andrei M. Raigorodskii,et al.  Counterexamples to Borsuk’s conjecture on spheres of small radius , 2010, ArXiv.

[11]  János Pach,et al.  Research problems in discrete geometry , 2005 .

[12]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[13]  JÓZSEF BALOGH,et al.  Coloring Some Finite Sets in ℝn , 2013, Discuss. Math. Graph Theory.

[14]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[15]  An improvement of the Frankl-Wilson theorem on the number of edges in a hypergraph with forbidden intersections of edges , 2014 .

[16]  B. Sudakov,et al.  Pseudo-random Graphs , 2005, math/0503745.

[17]  Béla Bollobás,et al.  The chromatic number of random graphs , 1988, Comb..

[18]  Béla Bollobás Random Graphs: Models of Random Graphs , 2001 .

[19]  C. Rogers,et al.  The realization of distances within sets in Euclidean space , 1972 .

[20]  Andrei M. Raigorodskii,et al.  New estimates in the problem of the number of edges in a hypergraph with forbidden intersections , 2013, Probl. Inf. Transm..

[21]  P. Erdös,et al.  INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .

[22]  A. Soifer The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of its Creators , 2008 .

[23]  Андрей Михайлович Райгородский,et al.  О числах Рамсея для полных дистанционных графов с вершинами в $\{0,1\}^n$@@@On the Ramsey numbers for complete distance graphs with vertices in $\{0,1\}^n$ , 2009 .

[24]  A. Raigorodskii Coloring Distance Graphs and Graphs of Diameters , 2013 .

[25]  B. Bollobás,et al.  Cliques in random graphs , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  A. Raigorodskii Surveys in Contemporary Mathematics: Three lectures on the Borsuk partition problem , 2007 .

[27]  Peter Frankl,et al.  Erdös–Ko–Rado Theorem—22 Years Later , 1983 .

[28]  A. Raigorodskii Borsuk's problem for (0, 1)-polytopes and cross-polytopes , 2002 .

[29]  K. Weber On the Independence Number of Random Subgraphs of the n-Cube , 1987 .

[30]  A. Raigorodskii Around Borsuk’s hypothesis , 2008 .

[31]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[32]  Tomasz Luczak The chromatic number of random graphs , 1991, Comb..

[33]  D. G. Larman A note on the realization of distances within sets in euclidean space , 1978 .

[34]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[35]  A. Raigorodskii,et al.  On the chromatic numbers of spheres in $ {\mathbb R}^n $ , 2010, 1010.0384.