Branching diffusion representation for nonlinear Cauchy problems and Monte Carlo approximation
暂无分享,去创建一个
Pierre Henry-Labordere | Nizar Touzi SOCIETE GENERALE | CMAP | P. Henry-Labordère | Cmap | Nizar Touzi Societe Generale
[1] Mehdi Dehghan,et al. Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions , 2009 .
[2] P. Markowich,et al. Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.
[3] Xiaolu Tan,et al. A Numerical Algorithm for a Class of BSDE Via Branching Process , 2013 .
[4] C. Mueller,et al. Solutions of semilinear wave equation via stochastic cascades , 2009, 0911.5450.
[5] Pierre Henry-Labordere,et al. Counterparty Risk Valuation: A Marked Branching Diffusion Approach , 2012, 1203.2369.
[6] M. Kac. A stochastic model related to the telegrapher's equation , 1974 .
[7] Bruno Bouchard,et al. Numerical approximation of BSDEs using local polynomial drivers and branching processes , 2017, Monte Carlo Methods Appl..
[8] Ankush Agarwal,et al. Branching diffusion representation of semi-linear elliptic PDEs and estimation using Monte Carlo method , 2017, Stochastic Processes and their Applications.
[9] H. McKean. Application of brownian motion to the equation of kolmogorov-petrovskii-piskunov , 1975 .
[10] Alain-Sol Sznitman,et al. Stochastic cascades and 3-dimensional Navier–Stokes equations , 1997 .
[11] S. Chatterjee. Stochastic solutions of the wave equation , 2013, 1306.2382.
[12] B. Bouchard,et al. Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations , 2004 .
[13] Nadia Oudjane,et al. Branching diffusion representation of semilinear PDEs and Monte Carlo approximation , 2016, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[14] Michael Mascagni,et al. Monte Carlo solution of Cauchy problem for a nonlinear parabolic equation , 2010, Math. Comput. Simul..
[15] J. L. Gall,et al. Spatial Branching Processes, Random Snakes, and Partial Differential Equations , 1999 .
[16] P. E.S.. A FEYNMAN-KAC-TYPE FORMULA FOR THE DETERMINISTIC AND STOCHASTIC WAVE EQUATIONS AND OTHER , 2008 .
[17] Xiaolu Tan,et al. Unbiased simulation of stochastic differential equations , 2015, 1504.06107.
[18] C. Mueller,et al. A Feynman-Kac-type formula for the deterministic and stochastic wave equations , 2007, 0710.2861.