Branching diffusion representation for nonlinear Cauchy problems and Monte Carlo approximation

We provide a probabilistic representations of the solution of some semilinear hyperbolicand high-order PDEs based on branching diffusions. These representations pave theway for a Monte-Carlo approximation of the solution, thus bypassing the curse ofdimensionality. We illustrate the numerical implications in the context of some popularPDEs in physics such as nonlinear Klein-Gordon equation, a simplied scalar versionof the Yang-Mills equation, a fourth-order nonlinear beam equation and the Gross-Pitaevskii PDEas an example of nonlinear Schrodinger equations.

[1]  Mehdi Dehghan,et al.  Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions , 2009 .

[2]  P. Markowich,et al.  Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.

[3]  Xiaolu Tan,et al.  A Numerical Algorithm for a Class of BSDE Via Branching Process , 2013 .

[4]  C. Mueller,et al.  Solutions of semilinear wave equation via stochastic cascades , 2009, 0911.5450.

[5]  Pierre Henry-Labordere,et al.  Counterparty Risk Valuation: A Marked Branching Diffusion Approach , 2012, 1203.2369.

[6]  M. Kac A stochastic model related to the telegrapher's equation , 1974 .

[7]  Bruno Bouchard,et al.  Numerical approximation of BSDEs using local polynomial drivers and branching processes , 2017, Monte Carlo Methods Appl..

[8]  Ankush Agarwal,et al.  Branching diffusion representation of semi-linear elliptic PDEs and estimation using Monte Carlo method , 2017, Stochastic Processes and their Applications.

[9]  H. McKean Application of brownian motion to the equation of kolmogorov-petrovskii-piskunov , 1975 .

[10]  Alain-Sol Sznitman,et al.  Stochastic cascades and 3-dimensional Navier–Stokes equations , 1997 .

[11]  S. Chatterjee Stochastic solutions of the wave equation , 2013, 1306.2382.

[12]  B. Bouchard,et al.  Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations , 2004 .

[13]  Nadia Oudjane,et al.  Branching diffusion representation of semilinear PDEs and Monte Carlo approximation , 2016, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[14]  Michael Mascagni,et al.  Monte Carlo solution of Cauchy problem for a nonlinear parabolic equation , 2010, Math. Comput. Simul..

[15]  J. L. Gall,et al.  Spatial Branching Processes, Random Snakes, and Partial Differential Equations , 1999 .

[16]  P. E.S. A FEYNMAN-KAC-TYPE FORMULA FOR THE DETERMINISTIC AND STOCHASTIC WAVE EQUATIONS AND OTHER , 2008 .

[17]  Xiaolu Tan,et al.  Unbiased simulation of stochastic differential equations , 2015, 1504.06107.

[18]  C. Mueller,et al.  A Feynman-Kac-type formula for the deterministic and stochastic wave equations , 2007, 0710.2861.