Effective Exchange Energy in a Thin, Spatially Inhomogeneous CuNi Layer Proximized by Nb.

Thin films of diluted magnetic alloys are widely used in superconducting spintronics devices. Most studies rely on transport measurements and assume homogeneous magnetic layers. Here we examine on a local scale the electronic properties of the well-known two-layer superconductor/ferromagnet structure Nb/CuNi. Scanning tunneling spectroscopy experiments demonstrated significant spatial variations of the tunneling conductance on nanoscale, with characteristic gapped, nongapped, and strongly zero-bias peaked spectra. The microscopic theory successfully reproduced the observed spectra and relied them to spatial variations of CuNi film thickness and composition, leading to strong variations of the effective exchange energy. The observed inhomogeneities put constraints on the use of diluted magnetic alloys in nanoscale devices.

[1]  H. Eisaki,et al.  Superconductivity-driven ferromagnetism and spin manipulation using vortices in the magnetic superconductor EuRbFe4As4 , 2021, Proceedings of the National Academy of Sciences.

[2]  M. Weides,et al.  Ultrastrong photon-to-magnon coupling in multilayered heterostructures involving superconducting coherence via ferromagnetic layers , 2020, Science Advances.

[3]  Timur K. Kim,et al.  Electronic Structures and Surface Reconstructions in Magnetic Superconductor RbEuFe4As4. , 2020, The journal of physical chemistry letters.

[4]  J. Schubert,et al.  Tailoring superconducting states in superconductor-ferromagnet hybrids , 2020, New Journal of Physics.

[5]  A. Sidorenko,et al.  Proximity effect in [Nb(1.5 nm)/Fe(x)]10/Nb(50 nm) superconductor/ferromagnet heterostructures , 2019, Beilstein journal of nanotechnology.

[6]  P. S. Dzhumaev,et al.  Ferromagnet/Superconductor Hybrid Magnonic Metamaterials , 2019, Advanced science.

[7]  E. Scheer,et al.  Creation of equal-spin triplet superconductivity at the Al/EuS interface , 2018, Nature Communications.

[8]  N. Klenov,et al.  Protected 0-π states in SIsFS junctions for Josephson memory and logic , 2018, Applied Physics Letters.

[9]  D. S. Baranov,et al.  Domain Meissner state and spontaneous vortex-antivortex generation in the ferromagnetic superconductor EuFe2(As0.79P0.21)2 , 2018, Science Advances.

[10]  M. M. Khapaev,et al.  Expansion of a superconducting vortex core into a diffusive metal , 2018, Nature Communications.

[11]  V. Novosad,et al.  Observation of superconducting vortex clusters in S/F hybrids , 2016, Scientific Reports.

[12]  S. K. Tolpygo Superconductor digital electronics: Scalability and energy efficiency issues (Review Article) , 2016, 1602.03546.

[13]  V. V. Ryazanov,et al.  Josephson magnetic rotary valve , 2014, 1412.1643.

[14]  T. Cren,et al.  Ex situ elaborated proximity mesoscopic structures for ultrahigh vacuum scanning tunneling spectroscopy , 2014 .

[15]  M. Blamire,et al.  Pure second harmonic current-phase relation in spin-filter Josephson junctions , 2014, Nature Communications.

[16]  M. Yu. Kupriyanov,et al.  Josephson φ-junctions based on structures with complex normal/ferromagnet bilayer , 2012, 1208.5932.

[17]  Alexander B. Zorin,et al.  A single flux quantum circuit with a ferromagnet-based Josephson π-junction , 2010 .

[18]  O. Mielke,et al.  Flip-Flopping Fractional Flux Quanta , 2006, Science.

[19]  V. K. Kaplunenko,et al.  Rapid single-flux quantum logic using π-shifters , 2003 .