Efficiently Supporting Temporal Granularities

Granularity is an integral feature of temporal data. For instance, a person’s age is commo nly given to the granularity ofyearsand the time of their next airline flight to the granularity of minutes. A granularity creates a discrete image, in terms of granules, of a (possibly continuous) time-line. We present a formal model for granularity in temporal operations that is integrated with tem poral indeterminacy, or “don’t know when” information. We also minimally extend the syntax and semant ics of SQL-92 to support mixed granularities. This support rests on two operations, scaleand cast, that move times between granularities, e.g., from days to months. We demonstrate that our sol tion is practical by showing how granularities can be specified in a modular fashion, and by outlining a timeand space-efficient implementation. The implementation uses several optimization strategi es to mitigate the expense of accommodating multiple granularities. [

[1]  Choosing a method , 1966 .

[2]  Julius T. Tou,et al.  Information Systems , 1973, GI Jahrestagung.

[3]  T. Lougenia Anderson,et al.  Modeling Time at the Conceptual Level , 1982, JCDKB.

[4]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[5]  Barbara Pernici,et al.  Time modeling in office information systems , 1985, SIGMOD Conference.

[6]  José Palazzo Moreira de Oliveira,et al.  Time concept in generalized data bases: TIGRE project , 1985, ACM '85.

[7]  David Forster,et al.  A Representation for Collections of Temporal Intervals , 1986, AAAI.

[8]  James Clifford,et al.  A Simple, General Structure for Temporal Domains , 1986, Temporal Aspects in Information Systems.

[9]  Nachum Dershowitz,et al.  Calendrical calculations , 1990, Softw. Pract. Exp..

[10]  Sushil Jajodia,et al.  Dealing with Granularity of Time in Temporal Databases , 1991, CAiSE.

[11]  Curtis E. Dyreson,et al.  Architectural Extensions to support Multiple Calendars , 1992 .

[12]  Angelo Montanari,et al.  Dealing with Time Granularity in the Event Calculus , 1992, FGCS.

[13]  Curtis E. Dyreson,et al.  Timestamp semantics and representation , 1993, Inf. Syst..

[14]  Nandlal L. Sarda,et al.  HSQL: A Historical Query Language , 1993, Temporal Databases.

[15]  Alan R. Simon,et al.  Understanding the New SQL: A Complete Guide , 1993 .

[16]  Ramez Elmasri,et al.  A consensus glossary of temporal database concepts , 1994, SGMD.

[17]  Michael Stonebraker,et al.  Implementing calendars and temporal rules in next generation databases , 1994, Proceedings of 1994 IEEE 10th International Conference on Data Engineering.

[18]  Xiaoyang Sean Wang Algebraic query languages on temporal databases with multiple time granularities , 1995, CIKM '95.

[19]  Richard T. Snodgrass,et al.  The TSQL2 Temporal Query Language , 1995 .

[20]  Michel Gauthier The avatars of a package for calendars in ada , 1995, Softw. Pract. Exp..

[21]  Christian S. Jensen,et al.  Adding Valid Time to SQL/Temporal , 1996 .

[22]  Duane Szafron,et al.  Modeling Time: Back to Basics , 1996 .

[23]  Duane Szafron,et al.  Modeling temporal primitives: back to basics , 1997, CIKM '97.

[24]  Ramez Elmasri,et al.  The Consensus Glossary of Temporal Database Concepts - February 1998 Version , 1997, Temporal Databases, Dagstuhl.

[25]  Paolo Terenziani,et al.  Integrating Calendar Dates and Qualitative Temporal Constraints in the Treatment of Periodic Events , 1997, IEEE Trans. Knowl. Data Eng..

[26]  Lin Hong EFFICIENT CONVERSION BETWEEN TEMPORAL GRANULARITIES , 1997 .

[27]  Curtis E. Dyreson,et al.  A Glossary of Time Granularity Concepts , 1997, Temporal Databases, Dagstuhl.

[28]  Stephen R. Gardner Building the data warehouse , 1998, CACM.

[29]  Curtis E. Dyreson,et al.  Supporting valid-time indeterminacy , 1998, TODS.