A Terminating and Confluent Linear Lambda Calculus

We present a rewriting system for the linear lambda calculus corresponding to the {!, $\multimap$}-fragment of intuitionistic linear logic. This rewriting system is shown to be strongly normalizing, and Church-Rosser modulo the trivial commuting conversion. Thus it provides a simple decision method for the equational theory of the linear lambda calculus. As an application we prove the strong normalization of the simply typed computational lambda calculus by giving a reduction-preserving translation into the linear lambda calculus.

[1]  Masahito Hasegawa Semantics of Linear Continuation-Passing in Call-by-Name , 2004, FLOPS.

[2]  Martin Odersky,et al.  Call-by-name, call-by-value, call-by-need and the linear lambda calculus , 1995, MFPS.

[3]  Neil Ghani Adjoint Rewriting and the !-type constructor , 1996 .

[4]  Andrew Barber,et al.  Dual Intuitionistic Linear Logic , 1996 .

[5]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[6]  Masahito Hasegawa Girard translation and logical predicates , 2000, J. Funct. Program..

[7]  Roy L. Crole,et al.  Categories for Types , 1994, Cambridge mathematical textbooks.

[8]  Michael Barr,et al.  *-Autonomous categories and linear logic , 1991, Mathematical Structures in Computer Science.

[9]  S. Lindley Reducibility and > >-lifting for Computation Types , 2004 .

[10]  Gavin M. Bierman What is a Categorical Model of Intuitionistic Linear Logic? , 1995, TLCA.

[11]  Andrew G. Barber,et al.  Linear type theories, semantics and action calculi , 1997 .

[12]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[13]  Gérard P. Huet,et al.  Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems , 1980, J. ACM.

[14]  Eugenio Moggi,et al.  Computational lambda-calculus and monads , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[15]  Masahito Hasegawa Linearly Used Effects: Monadic and CPS Transformations into the Linear Lambda Calculus , 2001, APLAS.

[16]  R. A. G. Seely,et al.  Linear Logic, -Autonomous Categories and Cofree Coalgebras , 1989 .

[17]  Paul-André Melliès Categorical models of linear logic revisited , 2002 .

[18]  Masahito Hasegawa,et al.  Classical linear logic of implications , 2002, Mathematical Structures in Computer Science.