A Terminating and Confluent Linear Lambda Calculus
暂无分享,去创建一个
[1] Masahito Hasegawa. Semantics of Linear Continuation-Passing in Call-by-Name , 2004, FLOPS.
[2] Martin Odersky,et al. Call-by-name, call-by-value, call-by-need and the linear lambda calculus , 1995, MFPS.
[3] Neil Ghani. Adjoint Rewriting and the !-type constructor , 1996 .
[4] Andrew Barber,et al. Dual Intuitionistic Linear Logic , 1996 .
[5] Patrick Lincoln,et al. Linear logic , 1992, SIGA.
[6] Masahito Hasegawa. Girard translation and logical predicates , 2000, J. Funct. Program..
[7] Roy L. Crole,et al. Categories for Types , 1994, Cambridge mathematical textbooks.
[8] Michael Barr,et al. *-Autonomous categories and linear logic , 1991, Mathematical Structures in Computer Science.
[9] S. Lindley. Reducibility and > >-lifting for Computation Types , 2004 .
[10] Gavin M. Bierman. What is a Categorical Model of Intuitionistic Linear Logic? , 1995, TLCA.
[11] Andrew G. Barber,et al. Linear type theories, semantics and action calculi , 1997 .
[12] J. Lambek,et al. Introduction to higher order categorical logic , 1986 .
[13] Gérard P. Huet,et al. Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems , 1980, J. ACM.
[14] Eugenio Moggi,et al. Computational lambda-calculus and monads , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.
[15] Masahito Hasegawa. Linearly Used Effects: Monadic and CPS Transformations into the Linear Lambda Calculus , 2001, APLAS.
[16] R. A. G. Seely,et al. Linear Logic, -Autonomous Categories and Cofree Coalgebras , 1989 .
[17] Paul-André Melliès. Categorical models of linear logic revisited , 2002 .
[18] Masahito Hasegawa,et al. Classical linear logic of implications , 2002, Mathematical Structures in Computer Science.