Dual Wavelet Frames and Riesz Bases in Sobolev Spaces

AbstractThis paper generalizes the mixed extension principle in L2(ℝd) of (Ron and Shen in J. Fourier Anal. Appl. 3:617–637, 1997) to a pair of dual Sobolev spaces Hs(ℝd) and H−s(ℝd). In terms of masks for φ,ψ1,…,ψL∈Hs(ℝd) and $\tilde{\phi},\tilde{\psi}^{1},\ldots,\tilde{\psi}^{L}\in H^{-s}({\mathbb{R}}^{d})$ , simple sufficient conditions are given to ensure that (Xs(φ;ψ1,…,ψL), $X^{-s}(\tilde{\phi};\tilde{\psi}^{1},\ldots,\tilde{\psi}^{L}))$ forms a pair of dual wavelet frames in (Hs(ℝd),H−s(ℝd)), where $$\begin{array}{ll}X^{s}\bigl(\phi;\psi^{1},\ldots,\psi^{L}\bigr):=&\bigl\{\phi(\cdot-k):k\in {\mathbb{Z}}^{d}\bigr\}\\[9pt]&{}\cup\bigl\{2^{j(d/2-s)}\psi^{\ell}(2^{j}\cdot-k):j\in {\mathbb{N}}_{0},\ k\in{\mathbb{Z}}^{d},\ \ell=1,\ \ldots,L\bigr\}.\end{array}$$ For s>0, the key of this general mixed extension principle is the regularity of φ, ψ1,…,ψL, and the vanishing moments of $\tilde{\psi}^{1},\ldots,\tilde{\psi}^{L}$ , while allowing $\tilde{\phi}$ , $\tilde{\psi}^{1},\ldots,\tilde{\psi}^{L}$ to be tempered distributions not in L2(ℝd) and ψ1,…,ψL to have no vanishing moments. So, the systems Xs(φ;ψ1,…,ψL) and $X^{-s}(\tilde{\phi};\tilde{\psi}^{1},\ldots,\tilde{\psi}^{L})$ may not be able to be normalized into a frame of L2(ℝd). As an example, we show that {2j(1/2−s)Bm(2j⋅−k):j∈ℕ0,k∈ℤ} is a wavelet frame in Hs(ℝ) for any 0<s<m−1/2, where Bm is the B-spline of order m. This simple construction is also applied to multivariate box splines to obtain wavelet frames with short supports, noting that it is hard to construct nonseparable multivariate wavelet frames with small supports. Applying this general mixed extension principle, we obtain and characterize dual Riesz bases $(X^{s}(\phi;\psi^{1},\ldots,\psi^{L}),X^{-s}(\tilde{\phi};\tilde{\psi}^{1},\ldots,\tilde{\psi}^{L}))$ in Sobolev spaces (Hs(ℝd),H−s(ℝd)). For example, all interpolatory wavelet systems in (Donoho, Interpolating wavelet transform. Preprint, 1997) generated by an interpolatory refinable function φ∈Hs(ℝ) with s>1/2 are Riesz bases of the Sobolev space Hs(ℝ). This general mixed extension principle also naturally leads to a characterization of the Sobolev norm of a function in terms of weighted norm of its wavelet coefficient sequence (decomposition sequence) without requiring that dual wavelet frames should be in L2(ℝd), which is quite different from other approaches in the literature.

[1]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[2]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[3]  David L. Donoho,et al.  Interpolating Wavelet Transforms , 1992 .

[4]  W. Dahmen,et al.  Multilevel preconditioning , 1992 .

[5]  C. Chui,et al.  On compactly supported spline wavelets and a duality principle , 1992 .

[6]  Zuowei Shen,et al.  Wavelets and pre-wavelets in low dimensions , 1992 .

[7]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[8]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[9]  C. D. Boor,et al.  Box splines , 1993 .

[10]  Y. Meyer Wavelets and Operators , 1993 .

[11]  Zuowei Shen Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .

[12]  W. Dahmen Stability of Multiscale Transformations. , 1995 .

[13]  I. Daubechies,et al.  A new technique to estimate the regularity of refinable functions , 1996 .

[14]  A. Ron,et al.  Affine systems inL2 (ℝd) II: Dual systems , 1997 .

[15]  B. Han On Dual Wavelet Tight Frames , 1997 .

[16]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[17]  Zuowei Shen,et al.  Multidimensional Interpolatory Subdivision Schemes , 1997 .

[18]  Zuowei Shen Refinable function vectors , 1998 .

[19]  R. Jia,et al.  Multivariate refinement equations and convergence of subdivision schemes , 1998 .

[20]  Zuowei Shen,et al.  Multivariate Compactly Supported Fundamental Refinable Functions, Duals, and Biorthogonal Wavelets , 1999 .

[21]  R. Jia Characterization of Smoothness of Multivariate Refinable Functions in Sobolev Spaces , 1999 .

[22]  Bin Han,et al.  Analysis and Construction of Optimal Multivariate Biorthogonal Wavelets with Compact Support , 1999, SIAM J. Math. Anal..

[23]  A. Ron,et al.  The Sobolev Regularity of Refinable Functions , 2000 .

[24]  Peter Oswald,et al.  Criteria for Hierarchical Bases in Sobolev Spaces , 2000 .

[25]  C. Chui,et al.  Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .

[26]  C. Canuto Multiscale Problems and methods in Numerical Simulations , 2003 .

[27]  Bin Han,et al.  Vector cascade algorithms and refinable function vectors in Sobolev spaces , 2003, J. Approx. Theory.

[28]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[29]  B. Han Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix , 2003 .

[30]  Bin Han,et al.  Computing the Smoothness Exponent of a Symmetric Multivariate Refinable Function , 2002, SIAM J. Matrix Anal. Appl..

[31]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[32]  W. Dahmen Multiscale and Wavelet Methods for Operator Equations , 2003 .

[33]  Raymond H. Chan,et al.  Wavelet Algorithms for High-Resolution Image Reconstruction , 2002, SIAM J. Sci. Comput..

[34]  Ding-Xuan Zhou,et al.  Compactly supported wavelet bases for Sobolev spaces , 2003 .

[35]  R. Gribonval,et al.  Bi-framelet systems with few vanishing moments characterize Besov spaces , 2004 .

[36]  R. Chan,et al.  Tight frame: an efficient way for high-resolution image reconstruction , 2004 .

[37]  B. Han,et al.  Pairs of Dual Wavelet Frames from Any Two Refinable Functions , 2004 .

[38]  R. Gribonval,et al.  Tight wavelet frames in Lebesgue and Sobolev spaces , 2004 .

[39]  R. Gribonval,et al.  On Approximation with Spline Generated Framelets , 2004 .

[40]  B. Han,et al.  SYMMETRIC MRA TIGHT WAVELET FRAMES WITH THREE GENERATORS AND HIGH VANISHING MOMENTS , 2004 .

[41]  B. Han ON A CONJECTURE ABOUT MRA RIESZ WAVELET BASES , 2004 .

[42]  A. Ron,et al.  CAPlets : wavelet representations without wavelets , 2005 .

[43]  Bin Han,et al.  Wavelets from the Loop Scheme , 2005 .

[44]  Bin Han,et al.  Riesz multiwavelet bases , 2006 .

[45]  Bin Han,et al.  Solutions in Sobolev spaces of vector refinement equations with a general dilation matrix , 2006, Adv. Comput. Math..

[46]  Bin Dong,et al.  Construction of Biorthogonal Wavelets from Pseudo-splines , 2022 .

[47]  Bin Han,et al.  Wavelets with Short Support , 2006, SIAM J. Math. Anal..

[48]  R. Chan,et al.  A framelet algorithm for enhancing video stills , 2007 .

[49]  I. Daubechies,et al.  Iteratively solving linear inverse problems under general convex constraints , 2007 .

[50]  Zuowei Shen,et al.  PSEUDO-SPLINES, WAVELETS AND FRAMELETS , 2007 .

[51]  R. Jia,et al.  Characterization of Riesz bases of wavelets generated from multiresolution analysis , 2007 .

[52]  Zuowei Shen,et al.  Deconvolution: a wavelet frame approach , 2007, Numerische Mathematik.

[53]  Bin Han,et al.  Refinable Functions and Cascade Algorithms in Weighted Spaces with Hölder Continuous Masks , 2008, SIAM J. Math. Anal..

[54]  Jian-Feng Cai,et al.  A framelet-based image inpainting algorithm , 2008 .

[55]  Raymond H. Chan,et al.  Restoration of Chopped and Nodded Images by Framelets , 2008, SIAM J. Sci. Comput..