Dual Wavelet Frames and Riesz Bases in Sobolev Spaces
暂无分享,去创建一个
[1] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[2] J. Pasciak,et al. Parallel multilevel preconditioners , 1990 .
[3] David L. Donoho,et al. Interpolating Wavelet Transforms , 1992 .
[4] W. Dahmen,et al. Multilevel preconditioning , 1992 .
[5] C. Chui,et al. On compactly supported spline wavelets and a duality principle , 1992 .
[6] Zuowei Shen,et al. Wavelets and pre-wavelets in low dimensions , 1992 .
[7] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[8] I. Daubechies. Ten Lectures on Wavelets , 1992 .
[9] C. D. Boor,et al. Box splines , 1993 .
[10] Y. Meyer. Wavelets and Operators , 1993 .
[11] Zuowei Shen. Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .
[12] W. Dahmen. Stability of Multiscale Transformations. , 1995 .
[13] I. Daubechies,et al. A new technique to estimate the regularity of refinable functions , 1996 .
[14] A. Ron,et al. Affine systems inL2 (ℝd) II: Dual systems , 1997 .
[15] B. Han. On Dual Wavelet Tight Frames , 1997 .
[16] A. Ron,et al. Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .
[17] Zuowei Shen,et al. Multidimensional Interpolatory Subdivision Schemes , 1997 .
[18] Zuowei Shen. Refinable function vectors , 1998 .
[19] R. Jia,et al. Multivariate refinement equations and convergence of subdivision schemes , 1998 .
[20] Zuowei Shen,et al. Multivariate Compactly Supported Fundamental Refinable Functions, Duals, and Biorthogonal Wavelets , 1999 .
[21] R. Jia. Characterization of Smoothness of Multivariate Refinable Functions in Sobolev Spaces , 1999 .
[22] Bin Han,et al. Analysis and Construction of Optimal Multivariate Biorthogonal Wavelets with Compact Support , 1999, SIAM J. Math. Anal..
[23] A. Ron,et al. The Sobolev Regularity of Refinable Functions , 2000 .
[24] Peter Oswald,et al. Criteria for Hierarchical Bases in Sobolev Spaces , 2000 .
[25] C. Chui,et al. Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .
[26] C. Canuto. Multiscale Problems and methods in Numerical Simulations , 2003 .
[27] Bin Han,et al. Vector cascade algorithms and refinable function vectors in Sobolev spaces , 2003, J. Approx. Theory.
[28] I. Daubechies,et al. Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .
[29] B. Han. Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix , 2003 .
[30] Bin Han,et al. Computing the Smoothness Exponent of a Symmetric Multivariate Refinable Function , 2002, SIAM J. Matrix Anal. Appl..
[31] A. Cohen. Numerical Analysis of Wavelet Methods , 2003 .
[32] W. Dahmen. Multiscale and Wavelet Methods for Operator Equations , 2003 .
[33] Raymond H. Chan,et al. Wavelet Algorithms for High-Resolution Image Reconstruction , 2002, SIAM J. Sci. Comput..
[34] Ding-Xuan Zhou,et al. Compactly supported wavelet bases for Sobolev spaces , 2003 .
[35] R. Gribonval,et al. Bi-framelet systems with few vanishing moments characterize Besov spaces , 2004 .
[36] R. Chan,et al. Tight frame: an efficient way for high-resolution image reconstruction , 2004 .
[37] B. Han,et al. Pairs of Dual Wavelet Frames from Any Two Refinable Functions , 2004 .
[38] R. Gribonval,et al. Tight wavelet frames in Lebesgue and Sobolev spaces , 2004 .
[39] R. Gribonval,et al. On Approximation with Spline Generated Framelets , 2004 .
[40] B. Han,et al. SYMMETRIC MRA TIGHT WAVELET FRAMES WITH THREE GENERATORS AND HIGH VANISHING MOMENTS , 2004 .
[41] B. Han. ON A CONJECTURE ABOUT MRA RIESZ WAVELET BASES , 2004 .
[42] A. Ron,et al. CAPlets : wavelet representations without wavelets , 2005 .
[43] Bin Han,et al. Wavelets from the Loop Scheme , 2005 .
[44] Bin Han,et al. Riesz multiwavelet bases , 2006 .
[45] Bin Han,et al. Solutions in Sobolev spaces of vector refinement equations with a general dilation matrix , 2006, Adv. Comput. Math..
[46] Bin Dong,et al. Construction of Biorthogonal Wavelets from Pseudo-splines , 2022 .
[47] Bin Han,et al. Wavelets with Short Support , 2006, SIAM J. Math. Anal..
[48] R. Chan,et al. A framelet algorithm for enhancing video stills , 2007 .
[49] I. Daubechies,et al. Iteratively solving linear inverse problems under general convex constraints , 2007 .
[50] Zuowei Shen,et al. PSEUDO-SPLINES, WAVELETS AND FRAMELETS , 2007 .
[51] R. Jia,et al. Characterization of Riesz bases of wavelets generated from multiresolution analysis , 2007 .
[52] Zuowei Shen,et al. Deconvolution: a wavelet frame approach , 2007, Numerische Mathematik.
[53] Bin Han,et al. Refinable Functions and Cascade Algorithms in Weighted Spaces with Hölder Continuous Masks , 2008, SIAM J. Math. Anal..
[54] Jian-Feng Cai,et al. A framelet-based image inpainting algorithm , 2008 .
[55] Raymond H. Chan,et al. Restoration of Chopped and Nodded Images by Framelets , 2008, SIAM J. Sci. Comput..