Three-dimensional visualization and analysis methodologies: a current perspective.

Three-dimensional (3D) imaging was developed to provide both qualitative and quantitative information about an object or object system from images obtained with multiple modalities including digital radiography, computed tomography, magnetic resonance imaging, positron emission tomography, single photon emission computed tomography, and ultrasonography. Three-dimensional imaging operations may be classified under four basic headings: preprocessing, visualization, manipulation, and analysis. Preprocessing operations (volume of interest, filtering, interpolation, registration, segmentation) are aimed at extracting or improving the extraction of object information in given images. Visualization operations facilitate seeing and comprehending objects in their full dimensionality and may be either scene-based or object-based. Manipulation may be either rigid or deformable and allows alteration of object structures and of relationships between objects. Analysis operations, like visualization operations, may be either scene-based or object-based and deal with methods of quantifying object information. There are many challenges involving matters of precision, accuracy, and efficiency in 3D imaging. Nevertheless, 3D imaging is an exciting technology that promises to offer an expanding number and variety of applications.

[1]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[2]  Hsun K. Liu,et al.  Two and three dimensional boundary detection , 1977 .

[3]  H K Liu,et al.  Display of Three‐Dimensional Information in Computed Tomography , 1977, Journal of computer assisted tomography.

[4]  Gabor T. Herman,et al.  Dynamic boundary surface detection , 1978 .

[5]  Gabor T. Herman,et al.  The theory, design, implementation and evaluation of a three-dimensional surface detection algorithm , 1980, SIGGRAPH '80.

[6]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[7]  Azriel Rosenfeld,et al.  Segmentation and Estimation of Image Region Properties through Cooperative Hierarchial Computation , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  Norman I. Badler,et al.  Animating facial expressions , 1981, SIGGRAPH '81.

[9]  Sargur N. Srihari,et al.  Boundary Detection in Multidimensions , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Azriel Rosenfeld,et al.  Compact Region Extraction Using Weighted Pixel Linking in a Pyramid , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Paul D. Clayton,et al.  DYNAMIC SEARCH ALGORITHMS IN LEFT VENTRICULAR BORDER RECOGNITION AND ANALYSIS OF CORONARY ARTERIES. , 1984 .

[12]  Dan Gordon,et al.  Back-to-Front Display of Voxel Based Objects , 1985, IEEE Computer Graphics and Applications.

[13]  R. L. Butterfield,et al.  Multispectral analysis of magnetic resonance images. , 1985, Radiology.

[14]  R. Anthony Reynolds,et al.  Image space shading of three-dimensional objects , 1985 .

[15]  Dan Gordon,et al.  Image space shading of 3-dimensional objects , 1985, Comput. Vis. Graph. Image Process..

[16]  F Bookstein,et al.  Computer-aided planning and evaluation of facial and orthognathic surgery. , 1986, Clinics in plastic surgery.

[17]  R. Bernstein,et al.  Shading 3D-Images from CT Using Gray-Level Gradients , 1986, IEEE Transactions on Medical Imaging.

[18]  Lih-Shyang Chen,et al.  A dynamic screen technique for shaded graphics display of slice-represented objects , 1987, Comput. Vis. Graph. Image Process..

[19]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Samuel M. Goldwasser,et al.  Real-time display and manipulation of 3-d medical objects: the voxel processor architecture , 1987 .

[21]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[22]  Keith Waters,et al.  A muscle model for animation three-dimensional facial expression , 1987, SIGGRAPH.

[23]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[24]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[25]  Ruzena Bajcsy,et al.  Multiresolution elastic matching , 1989, Comput. Vis. Graph. Image Process..

[26]  C. Pelizzari,et al.  Accurate Three‐Dimensional Registration of CT, PET, and/or MR Images of the Brain , 1989, Journal of computer assisted tomography.

[27]  M W Vannier,et al.  Craniosynostosis: diagnostic value of three-dimensional CT reconstruction. , 1989, Radiology.

[28]  Marc Levoy,et al.  Efficient ray tracing of volume data , 1990, TOGS.

[29]  R. Kikinis,et al.  Three-dimensional segmentation of MR images of the head using probability and connectivity. , 1990, Journal of computer assisted tomography.

[30]  J. Udupa,et al.  Shape-based interpolation of multidimensional objects. , 1990, IEEE transactions on medical imaging.

[31]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Henry Fuchs,et al.  3D imaging in medicine : algorithms, systems, applications , 1990 .

[33]  S P Raya,et al.  Low-level segmentation of 3-D magnetic resonance brain images-a rule-based system. , 1990, IEEE transactions on medical imaging.

[34]  Jayaram K. Udupa,et al.  Registration of 3D objects and surfaces , 1990, IEEE Computer Graphics and Applications.

[35]  N Magnenat Thalmann,et al.  Creating Realistic Three-Dimensional Human Shape Characters for Computer-Generated Films , 1991 .

[36]  Demetri Terzopoulos,et al.  Techniques for Realistic Facial Modeling and Animation , 1991 .

[37]  Jayaram K. Udupa,et al.  Surface and volume rendering in 3D imaging: a comparison , 1991 .

[38]  D. Louis Collins,et al.  Warping of a computerized 3-D atlas to match brain image volumes for quantitative neuroanatomical and functional analysis , 1991, Medical Imaging.

[39]  Jayaram K. Udupa,et al.  Fast visualization, manipulation, and analysis of binary volumetric objects , 1991, IEEE Computer Graphics and Applications.

[40]  G. Herman,et al.  3D Imaging In Medicine , 1991 .

[41]  A. Alavi,et al.  Analysis of brain and cerebrospinal fluid volumes with MR imaging. Part I. Methods, reliability, and validation. , 1991, Radiology.

[42]  Akio Koide,et al.  An Efficient Method of Triangulating Equi-Valued Surfaces by Using Tetrahedral Cells , 1991 .

[43]  A. Ardeshir Goshtasby,et al.  Matching of tomographic slices for interpolation , 1992, IEEE Trans. Medical Imaging.

[44]  G D Rubin,et al.  CT angiography with spiral CT and maximum intensity projection. , 1992, Radiology.

[45]  R. Kikinis,et al.  Routine quantitative analysis of brain and cerebrospinal fluid spaces with MR imaging , 1992, Journal of magnetic resonance imaging : JMRI.

[46]  Donna G. Brown,et al.  Contrast‐to‐noise ratios in maximum intensity projection images , 1992, Magnetic resonance in medicine.

[47]  Alan Kalvin,et al.  Segmentation and Surface-Based Modeling Objects in Three-Dimensional Biomedical Images , 1991 .

[48]  Carolyn A. Bucholtz,et al.  Shape-based interpolation , 1992, IEEE Computer Graphics and Applications.

[49]  ISAAC COHEN,et al.  Using deformable surfaces to segment 3-D images and infer differential structures , 1992, CVGIP Image Underst..

[50]  D. Louis Collins,et al.  Model-based segmentation of individual brain structures from MRI data , 1992, Other Conferences.

[51]  Guido Gerig,et al.  Nonlinear anisotropic filtering of MRI data , 1992, IEEE Trans. Medical Imaging.

[52]  L. Cohen On Active Contour Models , 1992 .

[53]  Jianhua Shen,et al.  Muscle based human body deformation , 1993 .

[54]  Rob W. Parrott,et al.  Using kriging for 3D medical imaging. , 1993, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[55]  G A Holland,et al.  Comparison of magnetic resonance angiography and contrast arteriography in peripheral arterial stenosis. , 1993, American journal of surgery.

[56]  William E. Higgins,et al.  Shape-based interpolation of tree-like structures in three-dimensional images , 1993, IEEE Trans. Medical Imaging.

[57]  Jayaram K. Udupa,et al.  Shell rendering , 1993, IEEE Computer Graphics and Applications.

[58]  R. Bajcsy,et al.  Elastically Deforming 3D Atlas to Match Anatomical Brain Images , 1993, Journal of computer assisted tomography.

[59]  L O Hall,et al.  Review of MR image segmentation techniques using pattern recognition. , 1993, Medical physics.

[60]  J. Mazziotta,et al.  MRI‐PET Registration with Automated Algorithm , 1993, Journal of computer assisted tomography.

[61]  M I Miller,et al.  Mathematical textbook of deformable neuroanatomies. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Ruzena Bajcsy,et al.  Matching structural images of the human brain using statistical and geometrical image features , 1994, Other Conferences.

[63]  A. Fenster,et al.  Computer‐assisted identification and quantification of multiple sclerosis lesions in MR imaging volumes in the brain , 1994, Journal of magnetic resonance imaging : JMRI.

[64]  Jayaram K. Udupa,et al.  Shape-based interpolation of multidimensional grey-level images , 1994, Medical Imaging.

[65]  Stephen M. Pizer,et al.  Object-based interpolation via cores , 1994, Medical Imaging.

[66]  Jayaram K. Udupa Multidimensional Digital Boundaries , 1994, CVGIP Graph. Model. Image Process..

[67]  R. Rabbitt,et al.  3D brain mapping using a deformable neuroanatomy. , 1994, Physics in medicine and biology.

[68]  Dewey Odhner,et al.  3DVIEWNIX: an open, transportable, multidimensional, multimodality, multiparametric imaging software system , 1994, Medical Imaging.

[69]  Jung-Hong Chuang,et al.  Efficient generation of isosurfaces in volume rendering , 1995, Comput. Graph..

[70]  D. Louis Collins,et al.  Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images , 1995, IEEE Trans. Medical Imaging.

[71]  Max A. Viergever,et al.  A discrete dynamic contour model , 1995, IEEE Trans. Medical Imaging.

[72]  Alok Gupta,et al.  Dynamic Programming for Detecting, Tracking, and Matching Deformable Contours , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[73]  R P Velthuizen,et al.  MRI segmentation: methods and applications. , 1995, Magnetic resonance imaging.

[74]  Casimir A. Kulikowski,et al.  Composition of Image Analysis Processes Through Object-Centered Hierarchical Planning , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[75]  Demetri Terzopoulos,et al.  A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. , 1995, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[76]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[77]  Silvana G. Dellepiane,et al.  Extraction of intensity connectedness for image processing , 1995, Pattern Recognit. Lett..

[78]  Jayaram K. Udupa,et al.  Shell manipulation: interactive alteration of multiple-material fuzzy structures , 1995, Medical Imaging.

[79]  Michael W. Vannier,et al.  Assessing craniofacial surgical simulation , 1996, IEEE Computer Graphics and Applications.

[80]  Supun Samarasekera,et al.  Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation , 1996, CVGIP Graph. Model. Image Process..

[81]  Supun Samarasekera,et al.  User-steered image boundary segmentation , 1996, Medical Imaging.

[82]  Colin Studholme,et al.  Automated 3-D registration of MR and CT images of the head , 1996, Medical Image Anal..

[83]  Max A. Viergever,et al.  Evaluation of Ridge Seeking Operators for Multimodality Medical Image Matching , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[84]  R L Galloway,et al.  Comparison of projection algorithms used for the construction of maximum intensity projection images. , 1996, Journal of computer assisted tomography.

[85]  Supun Samarasekera,et al.  Multiple sclerosis lesion quantification using fuzzy-connectedness principles , 1997, IEEE Transactions on Medical Imaging.

[86]  J K Udupa,et al.  Computer-assisted quantitation of enhancing lesions in multiple sclerosis: correlation with clinical classification. , 1997, AJNR. American journal of neuroradiology.

[87]  Jayaram K. Udupa,et al.  Segmentation of 3D objects using live wire , 1997, Medical Imaging.

[88]  Jie Tian,et al.  Automatic clutter-free volume rendering for MR angiography using fuzzy connectedness , 1997, Medical Imaging.

[89]  D. Hemmy,et al.  A Pentium Personal Computer‐Based Craniofacial Three‐Dimensional Imaging and Analysis System , 1997, The Journal of craniofacial surgery.

[90]  J. Udupa,et al.  A new computer-assisted method for the quantification of enhancing lesions in multiple sclerosis. , 1997, Journal of computer assisted tomography.