Geometrically exact Cosserat rods with Kelvin–Voigt type viscous damping
暂无分享,去创建一个
Holger Lang | Joachim Linn | H. Lang | J. Linn | A. Tuganov | A. Tuganov
[1] Zdeněk P. Bažant,et al. Mechanics of solid materials , 1992 .
[2] A. Becker. A Review on Image Distortion Measures , 2000 .
[3] D. Zupan,et al. Dynamics of spatial beams in quaternion description based on the Newmark integration scheme , 2013 .
[4] Alex H. Barbat,et al. Dynamic analysis of beam structures considering geometric and constitutive nonlinearity , 2008 .
[5] J. C. Simo,et al. A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .
[6] Eitan Grinspun,et al. Discrete elastic rods , 2008, ACM Trans. Graph..
[7] Victor L. Berdichevsky,et al. Variational Principles of Continuum Mechanics , 2009 .
[8] S. Antman. Nonlinear problems of elasticity , 1994 .
[9] A. Zemitis. On interaction of a liquid film with an obstacle , 2002 .
[10] Nicole Marheineke,et al. Systematic derivation of an asymptotic model for the dynamics of curved viscous fibers , 2008 .
[11] J. Orlik. Homogenization for viscoelasticity of the integral type with aging and shrinkage , 1998 .
[12] L. Landau,et al. statistical-physics-part-1 , 1958 .
[13] F. T. Trouton,et al. On the coefficient of viscous traction and its relation to that of viscosity , 1906 .
[14] Horst W. Hamacher,et al. Inverse Radiation Therapy Planning: A Multiple Objective Optimisation Approach , 1999 .
[15] J. Linn. On the Frame — Invariant Description of the Phase Space of the Folgar–Tucker Equation , 2004 .
[16] Nicole Marheineke,et al. Fluid-fiber-interactions in rotational spinning process of glass wool production , 2011 .
[17] E. Vouga,et al. Discrete viscous threads , 2010, ACM Trans. Graph..
[18] Rakesh K. Kapania,et al. On a geometrically exact curved/twisted beam theory under rigid cross-section assumption , 2003 .
[19] V. Starikovicius,et al. The multiphase flow and heat transfer in porous media , 2003 .
[20] Miran Saje,et al. The quaternion-based three-dimensional beam theory , 2009 .
[21] Piero Villaggio,et al. Mathematical Models for Elastic Structures , 1997 .
[22] Walter Noll,et al. Foundations of Linear Viscoelasticity , 1961 .
[23] Johannes Gerstmayr,et al. A continuum mechanics based derivation of Reissner’s large-displacement finite-strain beam theory: the case of plane deformations of originally straight Bernoulli–Euler beams , 2009 .
[24] S. Kruse,et al. On the Pricing of Forward Starting Options under Stochastic Volatility , 2003 .
[25] A. Love. A treatise on the mathematical theory of elasticity , 1892 .
[26] Martin Arnold,et al. Numerical aspects in the dynamic simulation of geometrically exact rods , 2012 .
[27] Laurent Grisoni,et al. Geometrically exact dynamic splines , 2008, Comput. Aided Des..
[28] Axel Klar,et al. Hierarchy of mathematical models for production processes of technical textiles , 2009 .
[29] Alex H. Barbat,et al. Static analysis of beam structures under nonlinear geometric and constitutive behavior , 2007 .
[30] Martin Arnold,et al. Integration of Nonlinear Models of Flexible Body Deformation in Multibody System Dynamics , 2014 .
[31] S. Timoshenko,et al. Theory of elasticity , 1975 .
[32] H. Neunzert,et al. Mathematics as a Technology: Challenges for the next 10 Years , 2004 .
[33] Andrew J. Kurdila,et al. 『Fundamentals of Structural Dynamics』(私の一冊) , 2019, Journal of the Society of Mechanical Engineers.
[34] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[35] Liping Liu. THEORY OF ELASTICITY , 2012 .
[36] G. Cowper. The Shear Coefficient in Timoshenko’s Beam Theory , 1966 .
[37] N. Ettrich. Generation of surface elevation models for urban drainage simulation , 2005 .
[38] V. Berdichevskiĭ. On the energy of an elastic rod , 1981 .
[39] V. Berdichevsky. Structure of equations of macrophysics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[40] Lev Davidovich Landau,et al. THE FUNDAMENTAL PRINCIPLES OF STATISTICAL PHYSICS , 1980 .
[41] Robert Bohlin,et al. Fast simulation of quasistatic rod deformations for vr applications , 2008 .
[42] Anton Winterfeld,et al. Application of general semi-infinite programming to lapidary cutting problems , 2008, Eur. J. Oper. Res..
[43] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[44] Miran Saje,et al. Quaternion-based dynamics of geometrically nonlinear spatial beams using the Runge-Kutta method , 2012 .
[45] Ignacio Romero,et al. A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations , 2008 .
[46] Werner Wagner,et al. Shear correction factors in Timoshenko's beam theory for arbitrary shaped cross-sections , 2001 .
[47] J. Orlik. Homogenization for contact problems with periodically rough surfaces , 2004 .
[48] G. M.,et al. A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.
[49] L. A. Starosel'skii,et al. On the theory of curvilinear timoshenko-type rods , 1983 .
[50] Peter Schröder,et al. A simple geometric model for elastic deformations , 2010, ACM Trans. Graph..
[51] Nicole Marheineke,et al. Asymptotic model for the dynamics of curved viscous fibres with surface tension , 2009, Journal of Fluid Mechanics.
[52] L. Mahadevan,et al. Coiling Viscous Jets , 1996 .
[53] Th. Hanne,et al. Applying multiobjective evolutionary algorithms in industrial projects , 2006 .
[54] P. Schröder,et al. A simple geometric model for elastic deformations , 2010, SIGGRAPH 2010.
[55] M. Krekel. Optimal Portfolios With A Loan Dependent Credit Spread , 2002 .
[56] H. Weiss. Dynamics of Geometrically Nonlinear Rods: I. Mechanical Models and Equations of Motion , 2002 .
[57] Olivier A. Bauchau,et al. Flexible multibody dynamics , 2010 .
[58] T. Hanne. Eine Übersicht zum Scheduling von Baustellen , 2005 .
[59] D. Kehrwald. Parallel lattice Boltzmann simulation of complex flows , 2004 .
[60] R. Wegener,et al. On an asymptotic upper‐convected Maxwell model for a viscoelastic jet , 2012 .
[61] Hans Irschik,et al. Large deformation and stability of an extensible elastica with an unknown length , 2011 .
[62] Sigrid Leyendecker,et al. A discrete mechanics approach to the Cosserat rod theory—Part 1: static equilibria , 2011 .
[63] Horst W. Hamacher,et al. Inverse Radiation Therapy Planning: A Multiple Objective Optimisation Approach , 1999 .
[64] Frank-Thomas Lentes,et al. Three-dimensional radiative heat transfer in glass cooling processes , 1998 .
[65] S. Antman. Invariant Dissipative Mechanisms for the Spatial Motion of Rods Suggested by Artificial Viscosity , 2003 .
[66] Ettore Pennestrì,et al. Modeling elastic beams using dynamic splines , 2011 .
[67] Ahmed A. Shabana,et al. A nonlinear visco-elastic constitutive model for large rotation finite element formulations , 2011 .
[68] Ertugrul Taciroglu,et al. Much ado about shear correction factors in Timoshenko beam theory , 2010 .
[69] H. Neunzert. »Denn nichts ist für den Menschen als Menschen etwas wert, was er nicht mit Leidenschaft tun kann« , 2001 .
[70] Dewey H. Hodges,et al. Nonlinear Composite Beam Theory , 2006 .
[71] Oliver Wirjadi,et al. Survey of 3d image segmentation methods , 2007 .
[72] Robert L. Taylor,et al. Numerical formulations of elasto-viscoplastic response of beams accounting for the effect of shear , 1984 .
[73] A. Naumovich. On a Finite Volume Discretization of the Three-dimensional Biot Poroelasticity , 2006 .
[74] H. Knaf. Kernel Fisher discriminant functions – a concise and rigorous introduction , 2007 .
[75] David Rubin,et al. Introduction to Continuum Mechanics , 2009 .
[76] M. Junk. On the Construction of Discrete Equilibrium Distributions for Kinetic Schemes , 1999 .
[77] O. Bauchau,et al. Interpolation of finite rotations in flexible multi-body dynamics simulations , 2008 .
[78] C. Petrie,et al. Extensional viscosity: A critical discussion , 2006 .
[79] H. Weiss,et al. Dynamics of Geometrically Nonlinear Rods: II. Numerical Methods and Computational Examples , 2002 .
[80] H. Lang,et al. Multi-body dynamics simulation of geometrically exact Cosserat rods , 2011 .
[81] M. Géradin,et al. Flexible Multibody Dynamics: A Finite Element Approach , 2001 .
[82] A. Unterreiter,et al. Numerical evidance for the non-existing of solutions of the equations desribing rotational fiber spinning , 2007 .