Combining classifiers for face recognition

Current two-dimensional face recognition approaches can obtain a good performance only under constrained environments. However, in the real applications, face appearance changes significantly due to different illumination, pose, and expression. Face recognizers based on different representations of the input face images have different sensitivity to these variations. Therefore, a combination of different face classifiers which can integrate the complementary information should lead to improved classification accuracy. We use the sum rule and RBF-based integration strategies to combine three commonly used face classifiers based on PCA, ICA and LDA representations. Experiments conducted on a face database containing 206 subjects (2,060 face images) show that the proposed classifier combination approaches outperform individual classifiers.

[1]  Anil K. Jain,et al.  Combining multiple matchers for a high security fingerprint verification system , 1999, Pattern Recognit. Lett..

[2]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[3]  Anil K. Jain,et al.  Integrating Faces and Fingerprints for Personal Identification , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Gian Luca Marcialis,et al.  Fusion of LDA and PCA for Face Verification , 2002, Biometric Authentication.

[6]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[7]  A. Martínez,et al.  The AR face databasae , 1998 .

[8]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[9]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[10]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[11]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Marian Stewart Bartlett,et al.  Independent component representations for face recognition , 1998, Electronic Imaging.

[13]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[14]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Roberto Brunelli,et al.  Person identification using multiple cues , 1995, IEEE Transactions on Pattern Analysis and Machine Intelligence.