CMOS Silicon-on-Sapphire RF Tunable Matching Networks

This paper describes the design and optimization of an RF tunable network capable of matching highly mismatched loads to 50 at 1.9 GHz. Tuning was achieved using switched capacitors with low-loss, single-transistor switches. Simulations show that the performance of the matching network depends strongly on the switch performances and on the inductor losses. A 0.5m silicon-on-sapphire (SOS) CMOS technology was chosen for network implementation because of the relatively high-quality monolithic inductors achievable in the process. The matching network provides very good matching for inductive loads, and acceptable matching for highly capacitive loads. A 1 dB compression point greater than dBm was obtained for a wide range of load impedances.

[1]  Asad A. Abidi,et al.  Low-power radio-frequency ICs for portable communications , 1995, Proc. IEEE.

[2]  P. Garcia,et al.  An RF electronically controlled impedance tuning network design and its application to an antenna input impedance automatic matching system , 2004, IEEE Transactions on Microwave Theory and Techniques.

[3]  Yichuang Sun,et al.  Component value ranges of tunable impedance matching networks in RF communications systems , 1997 .

[4]  Rodney G. Vaughan,et al.  Measurement and evaluation of multi-antenna handsets in indoor mobile communication , 2001 .

[5]  Gürhan Küçük,et al.  Reducing reorder buffer complexity through selective operand caching , 2003, ISLPED '03.

[6]  Peter Sjöblom,et al.  An adaptive impedance tuning CMOS circuit for ISM 2.4-GHz band , 2005, IEEE Trans. Circuits Syst. I Regul. Pap..

[7]  Dennis P. Nyquist,et al.  Interaction of thin-wire antennas with conducting, polarizable bodies - Theory and experiment , 1978 .

[8]  J. R. Moritz,et al.  Frequency agile antenna tuning and matching , 2000 .

[9]  R.A. York,et al.  Analog tunable matching network using integrated thin-film BST capacitors , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[10]  D.M.W. Leenaerts Low power RF IC design for wireless communication , 2003, Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03..

[11]  Gabriel M. Rebeiz,et al.  A reconfigurable 6-20 GHz RF MEMS impedance tuner , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[12]  J. K. Fidler,et al.  Computer-aided determination of impedance matching domain , 1992 .

[13]  J. Toftgard,et al.  Effects on Portable Antennas by the Presence of a Person , 1993 .

[14]  Gabriel M. Rebeiz,et al.  A 20-50 GHz RF MEMS single-stub impedance tuner , 2005, IEEE Microwave and Wireless Components Letters.

[15]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[16]  Yahya Rahmat-Samii,et al.  Performance analysis of antennas for hand-held transceivers using FDTD , 1994 .

[17]  Tsuneo Tokumitsu,et al.  Low voltage, high power T/R switch MMIC using LC resonators , 1993, IEEE 1993 Microwave and Millimeter-Wave Monolithic Circuits Symposium Digest of Papers.

[18]  Mark Thompson,et al.  Determination of the impedance matching domain of impedance matching networks , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  F. Ellinger,et al.  Ultra compact, low loss, varactor tuned phase shifter MMIC at C-band , 2001, IEEE Microwave and Wireless Components Letters.

[20]  J. K. Fidler,et al.  Design method for impedance matching networks , 1996 .

[21]  F. Ellinger,et al.  Varactor-loaded transmission-line phase shifter at C-band using lumped elements , 2003 .

[22]  Christopher Bowick RF Circuit Design , 1982 .