Development of numerical simulation method for nonlinear elastodynamic : application to acoustic imaging of defect with the help of cavity chaotic transducer

In this thesis we propose the development of an innovative micro-damage imaging system based on a combination of Nonlinear Elastic Wave Spectroscopy techniques and “chaotic cavity transducer” concept. It consists of a combination of a PZT ceramic glued to a cavity of chaotic shape with the time reversal principle. The feasibility and capabilities of these new ideas is explored by numerical simulations, and optimal operational parameters for experimental implementation are suggested based on the modelling support. A large part of the research work conducted in this thesis is concentrated on the development of numerical simulation tools to help the improvement of such nonlinear imaging methods. A nodal Discontinuous Galerkin Finite Element Method (DG-FEM) scheme is extended to nonlinear elasto-dynamic including source terms. A Perfectly Matched Layer absorbing boundary condition well adapted to the DG-FEM scheme, called Nearly Perfectly Matched Layer (NPML), is also developed. In the case of orthotropic material as stability problems appear, a mixture of NPML and sponge layer, with a controllable ratio of these two kinds of absorbing layers, is introduced. The experimental validation of “chaotic cavity transducer” to focalize in reverberant and non-reverberant solid media with only one source is made. Classical time reversal, inverse filter and 1 Bit time reversal process are discussed and compared. The experimental demonstration of the use of a “chaotic cavity transducer”, in combination with the pulse inversion and 1-bit methods, to obtain an image of localized nonlinearity is made. This opens the possibility for high resolution imaging of nonlinear defects

[1]  Pierre-Yves Le Bas,et al.  Experimental Analysis for Nonlinear Time Reversal Imaging of Damaged Materials , 2006 .

[2]  Koen Van Den Abeele,et al.  Simulations of Nonlinear Time Reversal Imaging of Damaged Materials , 2006 .

[3]  P.D. Wilcox,et al.  Omni-directional guided wave transducer arrays for the rapid inspection of large areas of plate structures , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[4]  Chi-Wang Shu,et al.  The Discontinuous Galerkin Method for the Multiscale Modeling of Dynamics of Crystalline Solids , 2008, Multiscale Model. Simul..

[5]  K. V. D. Abeele,et al.  Multiscale Approach and Simulations of Wave Propagation and Resonance in Media with Localized Microdamage: 1-D and 2-D Cases , 2006 .

[6]  Richard L. Weaver,et al.  On diffuse waves in solid media , 1982 .

[7]  Jordi Ortín,et al.  Preisach modeling of hysteresis for a pseudoelastic Cu-Zn-Al single crystal , 1992 .

[8]  O. Bou Matar,et al.  Pseudospectral simulation of elastic waves propagation in heterogeneous nonlinear hysteretic medium , 2006 .

[9]  M. Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes — II. The three-dimensional isotropic case , 2006 .

[10]  E. A. Skelton,et al.  Guided elastic waves and perfectly matched layers , 2007 .

[11]  Ivo Babuška,et al.  Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle , 1995 .

[12]  F. Benmeddour,et al.  ÉTUDE EXPÉRIMENTALE ET NUMÉRIQUE DE L'INTERACTION DES ONDES DE LAMB EN PRÉSENCE D'ENDOMMAGEMENTS DANS DES STRUCTURES D'ALUMINIUM , 2006 .

[13]  Alexander Sutin,et al.  Micro-damage diagnostics using Nonlinear Elastic Wave Spectroscopy (NEWS) , 2001 .

[14]  W. L. Morris,et al.  Acoustic harmonic generation at unbonded interfaces and fatigue cracks , 1978 .

[15]  Roland Martin,et al.  A Variational Formulation of a Stabilized Unsplit Convolutional Perfectly Matched Layer for The Isotropic or Anisotropic Seismic Wave Equation , 2008 .

[16]  Kaufman,et al.  Wave chaos in the stadium: Statistical properties of short-wave solutions of the Helmholtz equation. , 1988, Physical review. A, General physics.

[17]  Ettore Barbieri,et al.  Nonlinear wave propagation in damaged hysteretic materials using a frequency domain-based PM space formulation , 2009 .

[18]  M. Scalerandi,et al.  Efficiency of time-reversed acoustics for nonlinear damage detection in solids , 2006 .

[19]  A. Brysev,et al.  Nonlinear ultrasonic phase-conjugate beams and their application in ultrasonic imaging , 2004 .

[20]  Antonio Gliozzi,et al.  Analysis of elastic nonlinearity using the Scaling Subtraction Method , 2009 .

[21]  Roux,et al.  Robust Acoustic Time Reversal with High-Order Multiple Scattering. , 1995, Physical review letters.

[22]  Michael Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - IV. Anisotropy , 2007 .

[23]  Jan S. Hesthaven,et al.  Numerical modeling of double-layered piezoelectric transducer systems using a high-order discontinuous Galerkin method , 2008 .

[24]  Jan Carmeliet,et al.  Inferring the degradation of pultruded composites from dynamic nonlinear resonance measurements , 2001 .

[25]  S. Cummer,et al.  A simple, nearly perfectly matched layer for general electromagnetic media , 2003, IEEE Microwave and Wireless Components Letters.

[26]  Mathias Fink,et al.  Time-reversal in an ultrasonic waveguide , 1997 .

[27]  S. Rokhlin,et al.  Modeling of wave propagation in layered piezoelectric media by a recursive asymptotic method , 2004, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[28]  V Yu Zaitsev,et al.  Observation of the "Luxemburg-Gorky effect" for elastic waves. , 2002, Ultrasonics.

[29]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[30]  Claire Prada,et al.  Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix. , 2003, The Journal of the Acoustical Society of America.

[31]  Joakim O. Blanch,et al.  Modeling of a constant Q; methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique , 1995 .

[32]  Chun H. Wang,et al.  Computerized time-reversal method for structural health monitoring , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[33]  A. T. Hoop,et al.  A modification of cagniard’s method for solving seismic pulse problems , 1960 .

[34]  C. Chin,et al.  Pulse inversion Doppler: a new method for detecting nonlinear echoes from microbubble contrast agents , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[35]  C. Sondergeld,et al.  Kelvin Notation for Stabilizing Elastic-Constant Inversion , 1998 .

[36]  O. Matar,et al.  Non-linear based time reversal acoustic applied to crack detection: Simulations and experiments , 2008 .

[37]  S. Gedney An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices , 1996 .

[38]  Nazarov,et al.  Experimental investigations of nonlinear acoustic phenomena in polycrystalline zinc , 2000, The Journal of the Acoustical Society of America.

[39]  Jeroen Tromp,et al.  A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation , 2003 .

[40]  Koen Van Den Abeele,et al.  Elastic pulsed wave propagation in media with second‐ or higher‐order nonlinearity. Part I. Theoretical framework , 1996 .

[41]  Ellegaard,et al.  Spectral Statistics of Acoustic Resonances in Aluminum Blocks. , 1995, Physical review letters.

[42]  Sabine Zaglmayr,et al.  8E-4 Perfectly Matched Layer Finite Element Simulation of Parasitic Acoustic Wave Radiation in Microacoustic Devices , 2007, 2007 IEEE Ultrasonics Symposium Proceedings.

[43]  M. Nafi Toksöz,et al.  An optimal absorbing boundary condition for elastic wave modeling , 1995 .

[44]  Paul A. Johnson,et al.  Resonance and elastic nonlinear phenomena in rock , 1996 .

[45]  Alexander Sutin,et al.  Single-channel time reversal in elastic solids , 2004 .

[46]  Raj Mittra,et al.  Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers , 1996 .

[47]  Patrick Joly,et al.  Stability of perfectly matched layers, group velocities and anisotropic waves , 2003 .

[48]  Kristel C. Meza-Fajardo,et al.  A Nonconvolutional, Split-Field, Perfectly Matched Layer for Wave Propagation in Isotropic and Anisotropic Elastic Media: Stability Analysis , 2008 .

[49]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[50]  Michele Meo,et al.  A new nonlinear elastic time reversal acoustic method for the identification and localisation of stress corrosion cracking in welded plate-like structures - : A simulation study , 2007 .

[51]  Kazuyoshi Takayama,et al.  A Godunov-type finite-volume scheme for unified solid-liquid elastodynamics on arbitrary two-dimensional grids , 2003 .

[53]  Lev A. Ostrovsky Wave processes in media with strong acoustic nonlinearity , 1991 .

[54]  John B. Schneider,et al.  Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation , 1996 .

[55]  Joakim O. Blanch,et al.  Viscoelastic finite-difference modeling , 1994 .

[56]  M. Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms , 2006 .

[57]  M. Fink,et al.  Time reversal of ultrasonic fields. I. Basic principles , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[58]  John B. Schneider,et al.  Implementation of transparent sources embedded in acoustic finite-difference time-domain grids , 1998 .

[59]  B. Engquist,et al.  Absorbing boundary conditions for acoustic and elastic wave equations , 1977, Bulletin of the Seismological Society of America.

[60]  Gerhard Busse,et al.  Ultrasound excited thermography using frequency modulated elastic waves , 2003 .

[61]  Michael V Berry,et al.  Regular and irregular semiclassical wavefunctions , 1977 .

[62]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[63]  Serge Dos Santos,et al.  A two-dimensional pseudospectral model for time reversal and nonlinear elastic wave spectroscopy. , 2007, The Journal of the Acoustical Society of America.

[64]  D. Komatitsch,et al.  An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation , 2007 .

[65]  Elastic wave propagation in anisotropic crustal material possessing arbitrary internal tilt , 2003 .

[66]  Hoon Sohn,et al.  Damage Detection in Composite Plates by Using an Enhanced Time Reversal Method , 2007 .

[67]  SELF-FOCUSING RAYLEIGH WAVE USING A TIME REVERSAL MIRROR , 1996 .

[68]  O. Buck,et al.  Measurement of the acoustic harmonic generation for materials characterization using contact transducers , 1992 .

[69]  H. Vehoff,et al.  Interaction of microcracks with selected interfaces : Focused ion beam for a systematic crack initiation , 2006 .

[70]  Qing Huo Liu,et al.  PERFECTLY MATCHED LAYERS FOR ELASTODYNAMICS: A NEW ABSORBING BOUNDARY CONDITION , 1996 .

[71]  PMLs for the numerical simulation of harmonic diffracted waves in an elastic plate , 2003 .

[72]  Gunilla Kreiss,et al.  Application of a perfectly matched layer to the nonlinear wave equation , 2007 .

[73]  Qing Huo Liu,et al.  Three‐dimensional unstructured‐grid discontinuous Galerkin method for Maxwell's equations with well‐posed perfectly matched layer , 2005 .

[74]  G. Papanicolaou,et al.  Theory and applications of time reversal and interferometric imaging , 2003 .

[75]  Alexander Sutin,et al.  Time Reversal Focusing of Short Pulses , 2007 .

[76]  M. Dumbser,et al.  An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes — III. Viscoelastic attenuation , 2007 .

[77]  M. Castaings,et al.  Finite element predictions for the dynamic response of thermo-viscoelastic material structures , 2004 .

[78]  Vladimir Zaitsev,et al.  Luxemburg-gorky effect retooled for elastic waves: a mechanism and experimental evidence. , 2002, Physical review letters.

[79]  P. Monk,et al.  Optimizing the Perfectly Matched Layer , 1998 .

[80]  J. Hesthaven,et al.  High–order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[81]  Mathias Fink,et al.  Revisiting iterative time reversal processing: application to detection of multiple targets. , 2004, The Journal of the Acoustical Society of America.

[82]  A. Ben-menahem Effect of a non‐linear boundary layer on the radiation from earthquakes and underground nuclear explosions , 1998 .

[83]  Roux,et al.  Time reversal in a waveguide: study of the temporal and spatial focusing , 2000, The Journal of the Acoustical Society of America.

[84]  S. Gedney,et al.  On the long-time behavior of unsplit perfectly matched layers , 2004, IEEE Transactions on Antennas and Propagation.

[85]  M. Fink,et al.  Ultrasonic pulse compression with one-bit time reversal through multiple scattering , 1999 .

[86]  A. Levander Fourth-order finite-difference P-SV seismograms , 1988 .

[87]  Mathias Fink,et al.  Time reversal techniques in ultrasonic nondestructive testing of scattering media , 2002 .

[88]  Julien de Rosny,et al.  INVITED ARTICLE: Time-reversed acoustics in random media and in chaotic cavities , 2002 .

[89]  J.-P. Berenger On the reflection from Cummer's nearly perfectly matched layer , 2004, IEEE Microwave and Wireless Components Letters.

[90]  U. Kuhl,et al.  Classical wave experiments on chaotic scattering , 2005 .

[91]  Gary Cohen,et al.  Discontinuous Galerkin methods for Maxwell's equations in the time domain , 2006 .

[92]  P J Brands,et al.  Experimental investigation of the pulse inversion technique for imaging ultrasound contrast agents. , 2000, The Journal of the Acoustical Society of America.

[93]  Moshe Reshef,et al.  A nonreflecting boundary condition for discrete acoustic and elastic wave equations , 1985 .

[94]  M. Fink,et al.  Self focusing in inhomogeneous media with time reversal acoustic mirrors , 1989, Proceedings., IEEE Ultrasonics Symposium,.

[95]  Mark A. Taylor,et al.  An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..

[96]  Alexander Sutin,et al.  DEVELOPMENT OF NONLINEAR TIME REVERSED ACOUSTICS (NLTRA) FOR APPLICATIONS TO CRACK DETECTION IN SOLIDS , 2003 .

[97]  A S Gliozzi,et al.  A 2D spring model for the simulation of ultrasonic wave propagation in nonlinear hysteretic media. , 2006, Ultrasonics.

[98]  2D pseudo-array using an ultrasonic one channel time-reversal mirror , 2004, IEEE Ultrasonics Symposium, 2004.

[99]  J L Thomas,et al.  Time reversal and the inverse filter. , 2000, The Journal of the Acoustical Society of America.

[100]  Haishan Zheng,et al.  Non‐linear seismic wave propagation in anisotropic media using the flux‐corrected transport technique , 2006 .

[101]  M. Fink,et al.  Time-reversal of ultrasonic fields. III. Theory of the closed time-reversal cavity , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[102]  D. S. Mountain,et al.  Stress Pattern Analysis By Thermal Emission (SPATE) , 1979, Other Conferences.

[103]  J. Hesthaven,et al.  Nodal DG-FEM solution of high-order Boussinesq-type equations , 2007 .

[104]  Jan S. Hesthaven,et al.  From Electrostatics to Almost Optimal Nodal Sets for Polynomial Interpolation in a Simplex , 1998 .

[105]  Heming Xu,et al.  Two-dimensional linear and nonlinear wave propagation in a half-space , 1999 .

[106]  Mathias Fink,et al.  Separation of interfering acoustic scattered signals using the invariants of the time-reversal operator. Application to Lamb waves characterization , 1998 .

[107]  Mathias Fink,et al.  Time reversal kaleidoscope: A smart transducer for three-dimensional ultrasonic imaging , 2004 .

[108]  Yan Shi,et al.  SIMULATIONS OF THE LEFT-HANDED MEDIUM USING DISCONTINUOUS GALERKIN METHOD BASED ON THE HYBRID DOMAINS , 2006 .

[109]  F. Bosia,et al.  Numerical Analysis of the Anomalous Elastic Behavior of Hysteretic Media: Quasi-Static, Dynamic and Relaxation Experiments , 2006 .

[110]  F. Schubert,et al.  Resonant bar simulations in media with localized damage. , 2004, Ultrasonics.

[111]  P. Johnson,et al.  Local interaction simulation approach to modelling nonclassical, nonlinear elastic behavior in solids. , 2003, The Journal of the Acoustical Society of America.

[112]  Emmanuel Moulin,et al.  Study of the fundamental Lamb modes interaction with symmetrical notches , 2008 .

[113]  A. Brysev,et al.  Wave phase conjugation of ultrasonic beams , 1998 .

[114]  Cummer,et al.  The nearly perfectly matched layer is a perfectly matched layer , 2004, IEEE Antennas and Wireless Propagation Letters.

[115]  Nicolas Quieffin Etude du rayonnement acoustique de structures solides : vers un système d'imagerie haute résolution , 2004 .

[116]  M. Carpenter,et al.  Fourth-order 2N-storage Runge-Kutta schemes , 1994 .

[117]  Mathias Fink,et al.  One-channel time-reversal in chaotic cavities: Theoretical limits , 1999 .

[118]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .

[119]  Cnrs Fre,et al.  3D PSTD Simulations of NEWS-TR and TR-NEWS Methods: Application to Nonclassical Nonlinearity Ultrasonic Imaging , 2007 .

[120]  Harold L. Atkins,et al.  QUADRATURE-FREE IMPLEMENTATION OF DISCONTINUOUS GALERKIN METHOD FOR HYPERBOLIC EQUATIONS , 1996 .

[121]  Gianluca Lazzi,et al.  On the optimal design of the PML absorbing boundary condition for the FDTD code , 1997 .

[122]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[123]  George Haller,et al.  Predicting transport by Lagrangian coherent structures with a high-order method , 2006 .

[124]  M. Fink,et al.  Time-reversed Lamb waves , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[125]  S. Orszag,et al.  Approximation of radiation boundary conditions , 1981 .

[126]  McCall,et al.  Hysteresis, Discrete Memory, and Nonlinear Wave Propagation in Rock: A New Paradigm. , 1995, Physical review letters.

[127]  Koen Van Den Abeele,et al.  Two-dimensional modeling of wave propagation in materials with hysteretic nonlinearity. , 2007, The Journal of the Acoustical Society of America.

[128]  James S. Sochacki,et al.  Absorbing boundary conditions and surface waves , 1987 .

[129]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[130]  J. Hesthaven,et al.  A level set discontinuous Galerkin method for free surface flows , 2006 .

[131]  Weng Cho Chew,et al.  A general approach to extend Berenger's absorbing boundary condition to anisotropic and dispersive media , 1998 .

[132]  I. Solodov,et al.  Non-linear SAW reflection: experimental evidence and NDE applications , 1993 .

[133]  Alexander Sutin,et al.  Imaging nonlinear scatterers applying the time reversal mirror , 2006 .

[134]  J. Minster,et al.  Hysteresis and two-dimensional nonlinear wave propagation in Berea Sandstone , 2000 .

[135]  J L Thomas,et al.  Optimal focusing by spatio-temporal inverse filter. II. Experiments. Application to focusing through absorbing and reverberating media. , 2001, The Journal of the Acoustical Society of America.

[136]  M. Fink,et al.  One-Channel Time Reversal of Elastic Waves in a Chaotic 2D-Silicon Cavity , 1997 .

[137]  V. Zaitsev,et al.  Propagation of initially bi-harmonic sound waves in a 1D semi-infinite medium with hysteretic non-linearity. , 2004, Ultrasonics.

[138]  Fernando L. Teixeira,et al.  General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media , 1998 .

[139]  O. Matar,et al.  Two-dimensional axisymmetric numerical simulation of supercritical phase conjugation of ultrasound in active solid media , 2005 .

[140]  A. V. Radostin,et al.  Wave processes in media with hysteretic nonlinearity: Part 2 , 2003 .

[141]  Qing Huo Liu,et al.  The perfectly matched layer for acoustic waves in absorptive media , 1997 .

[142]  Igor Solodov,et al.  Nonlinear air-coupled emission: The signature to reveal and image microdamage in solid materials , 2007 .

[143]  A. Giannopoulos,et al.  A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves , 2007 .

[144]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[145]  On the use of a chaotic cavity transducer in nonlinear elastic imaging , 2009 .

[146]  K. Pfleiderer,et al.  Nonlinear self-modulation and subharmonic acoustic spectroscopy for damage detection and location , 2004 .

[147]  J.A. Jensen,et al.  Use of modulated excitation signals in medical ultrasound. Part I: basic concepts and expected benefits , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[148]  Bernard Castagnède,et al.  Frequency up-conversion and frequency down-conversion of acoustic waves in damaged materials , 2002 .

[149]  Mathias Fink,et al.  One-channel time-reversal in chaotic cavities: Experimental results , 1999 .

[150]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[151]  Antonio Gliozzi,et al.  A LISA Model of the Nonlinear and Hysteretic Response of Interstitial Regions to Applied Stresses , 2006 .

[152]  G. Grégoire,et al.  Nonlinear photothermal and photoacoustic processes for crack detection , 2008 .

[153]  D. Komatitsch,et al.  Simulation of anisotropic wave propagation based upon a spectral element method , 2000 .

[154]  O. Matar,et al.  Convolution-Perfectly Matched Layer (C-PML) absorbing boundary condition for wave propagation in piezoelectric solid , 2008, 2008 IEEE Ultrasonics Symposium.

[155]  Richard L. Weaver,et al.  Weak Anderson localization and enhanced backscatter in reverberation rooms and quantum dots , 1994 .

[156]  Tobin A. Driscoll,et al.  Staggered Time Integrators for Wave Equations , 2000, SIAM J. Numer. Anal..

[157]  Paul A. Johnson,et al.  Nonlinear Mesoscopic Elasticity: Evidence for a New Class of Materials , 1999 .

[158]  Antonio Gliozzi,et al.  Nonlinear acoustic time reversal imaging using the scaling subtraction method , 2008 .

[159]  Yibing Zheng,et al.  Anisotropic Perfectly Matched Layers for Elastic Waves in Cartesian and Curvilinear Coordinates , 2002 .

[160]  BRIEF COMMUNICATIONS: Problem of reversal of an acoustic wavefront and amplification of the reversed wave , 1981 .

[161]  D. Borup,et al.  Formulation and validation of Berenger's PML absorbing boundary for the FDTD simulation of acoustic scattering , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[162]  Michele Meo,et al.  Damage localization using transient non-linear elastic wave spectroscopy on composite structures , 2008 .

[163]  J L Thomas,et al.  Optimal focusing by spatio-temporal inverse filter. I. Basic principles. , 2001, The Journal of the Acoustical Society of America.

[164]  Stephen D. Gedney,et al.  Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media , 2000 .

[165]  K. E.-A. Van Den Abeele,et al.  Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage, Part I: Nonlinear Wave Modulation Spectroscopy (NWMS) , 2000 .

[166]  Antonio Gliozzi,et al.  A scaling method to enhance detection of a nonlinear elastic response , 2008 .

[167]  G. Mur Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations , 1981, IEEE Transactions on Electromagnetic Compatibility.

[168]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[169]  Johan O. A. Robertsson,et al.  A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography , 1996 .

[170]  Qing Huo Liu PML and PSTD algorithm for arbitrary lossy anisotropic media , 1999 .

[171]  Antonios Giannopoulos,et al.  Complex frequency shifted convolution PML for FDTD modelling of elastic waves , 2007 .

[172]  M. Fink,et al.  Time reversal acoustics , 1996, IEEE Ultrasonics Symposium, 2004.

[173]  M. Fink,et al.  Generation of very high pressure pulses with 1-bit time reversal in a solid waveguide , 2001 .

[174]  Aria Abubakar,et al.  Application of the nearly perfectly matched layer in acoustic wave modeling , 2007 .

[175]  Gang Zhao,et al.  MULTIDOMAIN PSEUDOSPECTRAL TIME-DOMAIN (PSTD) METHOD FOR ACOUSTIC WAVES IN LOSSY MEDIA , 2004 .

[176]  O. Matar,et al.  Contact phase modulation method for acoustic nonlinear parameter measurement in solid. , 2004, Ultrasonics.

[177]  J. Minster,et al.  Model for nonlinear wave propagation derived from rock hysteresis measurements , 1998 .

[178]  K. Mccall Theoretical study of nonlinear elastic wave propagation , 1994 .

[179]  José M. Carcione,et al.  WAVE-PROPAGATION SIMULATION IN AN ELASTIC ANISOTROPIC (TRANSVERSELY ISOTROPIC) SOLID , 1988 .

[180]  E. Toro,et al.  An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - V. Local time stepping and p-adaptivity , 2007 .

[181]  A THEORETICAL PARADIGM FOR DESCRIBING HYSTERESIS AND NONLINEAR ELASTICITY IN ARBITRARY ANISOTROPIC ROCKS , 2000 .

[182]  Veniamin E. Nazarov,et al.  Nonlinear acoustics of micro-inhomogeneous media , 1988 .

[183]  Gunilla Kreiss,et al.  A new absorbing layer for elastic waves , 2006, J. Comput. Phys..

[184]  E. Michielssen,et al.  Complex coordinate system as a generalized absorbing boundary condition , 1997, IEEE Antennas and Propagation Society International Symposium 1997. Digest.

[185]  G. McMechan,et al.  Causes and reduction of numerical artefacts in pseudo-spectral wavefield extrapolation , 1996 .

[186]  T J Ulrich,et al.  Interaction dynamics of elastic waves with a complex nonlinear scatterer through the use of a time reversal mirror. , 2007, Physical review letters.

[187]  C. Glorieux,et al.  Full-field imaging of nonclassical acoustic nonlinearity , 2007 .