On symmetric SL-invariant polynomials in four qubits
暂无分享,去创建一个
[1] B. Kostant,et al. Lie Group Representations on Polynomial Rings , 1963 .
[2] W. Wootters. Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.
[3] J. Luque,et al. Polynomial invariants of four qubits , 2002, quant-ph/0212069.
[4] J. Cirac,et al. Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.
[5] È. Vinberg,et al. THE WEYL GROUP OF A GRADED LIE ALGEBRA , 1976 .
[6] M. Mehta. Basic sets of invariant polynomials for finite reflection groups , 1988 .
[7] J. Humphreys. Reflection groups and coxeter groups , 1990 .
[8] W. Wootters,et al. Distributed Entanglement , 1999, quant-ph/9907047.
[9] Martin B. Plenio,et al. An introduction to entanglement measures , 2005, Quantum Inf. Comput..
[10] Akimasa Miyake,et al. Multipartite entanglement and hyperdeterminants , 2002, Quantum Inf. Comput..
[11] B. Kostant,et al. The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group , 1959 .
[12] Nicolas Bourbaki,et al. Groupes et algèbres de Lie , 1971 .
[13] B. Moor,et al. Normal forms and entanglement measures for multipartite quantum states , 2001, quant-ph/0105090.
[14] A. Miyake. Classification of multipartite entangled states by multidimensional determinants , 2002, quant-ph/0206111.
[15] M. Lewenstein,et al. Quantum Entanglement , 2020, Quantum Mechanics.
[16] A. Uhlmann. Fidelity and Concurrence of conjugated states , 1999, quant-ph/9909060.
[17] Stephen S. Bullock,et al. Canonical decompositions of n-qubit quantum computations and concurrence , 2004 .
[18] On polynomial invariants of several qubits , 2008, 0804.1661.
[19] A. Osterloh,et al. Constructing N-qubit entanglement monotones from antilinear operators (4 pages) , 2004, quant-ph/0410102.