On symmetric SL-invariant polynomials in four qubits

We find the generating set of \(\mathop{\mathrm{SL}}\nolimits\)-invariant polynomials in four qubits that are also invariant under permutations of the qubits. The set consists of four polynomials of degrees 2, 6, 8, and 12, for which we find an elegant expression in the space of critical states. These invariants are the degrees if the basic invariants of the invariants for F 4, and in fact, the group plays an important role in this note. In addition, we show that the hyperdeterminant in four qubits is the only \(\mathop{\mathrm{SL}}\nolimits\)-invariant polynomial (up to powers of itself) that is non-vanishing precisely on the set of generic states.

[1]  B. Kostant,et al.  Lie Group Representations on Polynomial Rings , 1963 .

[2]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[3]  J. Luque,et al.  Polynomial invariants of four qubits , 2002, quant-ph/0212069.

[4]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[5]  È. Vinberg,et al.  THE WEYL GROUP OF A GRADED LIE ALGEBRA , 1976 .

[6]  M. Mehta Basic sets of invariant polynomials for finite reflection groups , 1988 .

[7]  J. Humphreys Reflection groups and coxeter groups , 1990 .

[8]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[9]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[10]  Akimasa Miyake,et al.  Multipartite entanglement and hyperdeterminants , 2002, Quantum Inf. Comput..

[11]  B. Kostant,et al.  The Principal Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group , 1959 .

[12]  Nicolas Bourbaki,et al.  Groupes et algèbres de Lie , 1971 .

[13]  B. Moor,et al.  Normal forms and entanglement measures for multipartite quantum states , 2001, quant-ph/0105090.

[14]  A. Miyake Classification of multipartite entangled states by multidimensional determinants , 2002, quant-ph/0206111.

[15]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[16]  A. Uhlmann Fidelity and Concurrence of conjugated states , 1999, quant-ph/9909060.

[17]  Stephen S. Bullock,et al.  Canonical decompositions of n-qubit quantum computations and concurrence , 2004 .

[18]  On polynomial invariants of several qubits , 2008, 0804.1661.

[19]  A. Osterloh,et al.  Constructing N-qubit entanglement monotones from antilinear operators (4 pages) , 2004, quant-ph/0410102.