Rate of Ionization Behind Shock Waves in Air. II. Theoretical Interpretations

The problem of spontaneous ionization (i.e., no externally applied electromagnetic fields, nor hard radiation) in the reaction zone behind strong normal shock waves in air has been treated concurrently with the problem of dissociation and vibrational relaxation. Through a comparison of specific ionization rates, one may conclude that up to a shock velocity of 9 km/sec (about 27 times the speed of sound at room temperature), the predominant electron production process would be atom—atom ionizing collisions. This would be followed in an approximately decreasing order of importance by photoionization, electron impact, atom—molecule collisions, and molecule—molecule collisions. The charge exchange reactions, while not contributing directly to the electron production process, were found to have a small but noticeable indirect effect on the resultant electron density distribution at some distance behind the shock due to their continuous shifting of the relative population between atomic and molecular ions (whic...

[1]  Philip M. Morse,et al.  Electronic and Ionic Impact Phenomena , 1953 .

[2]  L. Spitzer Physics of fully ionized gases , 1956 .

[3]  A. W. Lemmon,et al.  Progress in ASTRONAUTICS and ROCKETRY , 1961 .

[4]  S. Chapman,et al.  The Upper Atmosphere , 1936, Nature.

[5]  R. Allen,et al.  RADIATION FROM THE NONEQUILIBRIUM SHOCK FRONT , 1962 .

[6]  Po Lee Photodissociation and Photoionization of Oxygen (O_2) as Inferred from Measured Absorption Coefficients , 1955 .

[7]  M. Camac O2 Vibration Relaxation in Oxygen‐Argon Mixtures , 1961 .

[8]  M. Bachynski,et al.  Collision frequency associated with high temperature air and scattering cross-sections of the constituents , 1961 .

[9]  D. R. Bates Chemical reactions in the lower and upper atmosphere: Stanford Research Institute: John Wiley, London, 1962. x + 390 pp. 105s , 1962 .

[10]  G. Herzberg,et al.  Spectra of diatomic molecules , 1950 .

[11]  A. Eschenroeder IONIZATION NONEQUILIBRIUM IN EXPANDING FLOWS , 1962 .

[12]  G. L. Weissler,et al.  Absorption Cross Sections of Methane and Ammonia in the Vacuum Ultraviolet , 1955 .

[13]  P. V. Marrone,et al.  Correspondence between Normal‐Shock and Blunt‐Body Flows , 1962 .

[14]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[15]  Vernon H. Blackman,et al.  Vibrational relaxation in oxygen and nitrogen , 1956, Journal of Fluid Mechanics.

[16]  Shao‐Chi Lin Limiting Velocity for a Rotating Plasma , 1961 .

[17]  H. Petschek,et al.  Approach to equilibrium lonization behind strong shock waves in argon , 1957 .

[18]  J. J. Thomson,et al.  XXIX.Recombination of gaseous ions, the chemical combination of gases, and monomolecular reactions , 1924 .

[19]  R. Taylor,et al.  Absolute intensity of non-equilibrium radiation in air and stagnation heating at high altitudes☆ , 1959 .

[20]  N. Davidson,et al.  CALCULATION OF REACTION PROFILES BEHIND STEADY STATE SHOCK WAVES. II. THE DISSOCIATION OF AIR , 1959 .

[21]  W. C. Walker,et al.  Photoionization Efficiencies and Cross Sections in O 2 , N 2 , CO 2 , A, H 2 O, H 2 , and CH 4 , 1955 .

[22]  J. Teare,et al.  A STREAMTUBE APPROXIMATION FOR CALCULATION OF REACTION RATES IN THE INVISCID FLOW FIELD OF HYPERSONIC OBJECTS , 1961 .

[23]  T. Jensen Proceedings of the fourth international conference on ionization phenomena in gases: N. Robert Nilsson (Editor) (North-Holland Publishing Company, Amsterdam 1960. Vol. I and II, 1210 p. Glds. 130.-) , 1960 .

[24]  Roddam Narasimha,et al.  Structure of a plane shock layer , 1962 .

[25]  Kurt E. Shuler,et al.  STUDIES IN NONEQUILIBRIUM RATE PROCESSES. I. THE RELAXATION OF A SYSTEM OF HARMONIC OSCILLATORS , 1957 .

[26]  Ta-you Wu Auto-Ionization in Doubly Excited Helium and the λ320.4 and λ357.5 Lines , 1944 .

[27]  Shao Lin Radio echoes from a manned satellite during re‐entry , 1962 .

[28]  XVII. The Conductivity produced in gases by the motion of negatively charged ions , 1901 .

[29]  W. Fyfe,et al.  Low‐Density Shock Tube for Chemical Kinetics Studies , 1961 .

[30]  Lewis M. Branscomb,et al.  Photodetachment Cross Section and the Electron Affinity of Atomic Oxygen , 1958 .

[31]  J. Daiber,et al.  Decomposition Rate of Nitric Oxide between 3000 and 4300°K , 1961 .

[32]  G. Miller,et al.  Ionization of Nitrogen Molecules by Nitrogen Molecules , 1961 .

[33]  Sanborn C. Brown,et al.  Basic Data of Plasma Physics , 1961 .

[34]  A. Roshko,et al.  Elements of Gas Dynamics , 1957 .

[35]  A. Phelps,et al.  Collisional Detachment in Molecular Oxygen , 1961 .

[36]  H. Weymann Electron Diffusion ahead of Shock Waves in Argon , 1960 .

[37]  J. D. Teare,et al.  Theory of Radiation from Luminous Shock Waves in Nitrogen , 1959 .

[38]  N. Utterback IONIZATION OF NITROGEN AND OXYGEN MOLECULES BY NITROGEN AND OXYGEN MOLECULES , 1963 .

[39]  M. De Handbuch der Physik , 1957 .

[40]  K. Wray CHEMICAL KINETICS OF HIGH TEMPERATURE AIR , 1962 .

[41]  Richard Courant,et al.  Supersonic Flow And Shock Waves , 1948 .

[42]  J. Kelso,et al.  Thermal Decomposition of Nitric Oxide , 1955 .

[43]  N. F. Sir Mott,et al.  The theory of atomic collisions , 1933 .

[44]  J. Teare,et al.  Shock‐Tube Study of the Kinetics of Nitric Oxide at High Temperatures , 1962 .

[45]  J. W. Bond The Structure of a Shock Front in Argon. , 1957 .

[46]  J. Tate,et al.  The Efficiencies of Ionization and Ionization Potentials of Various Gases Under Electron Impact , 1932 .

[47]  M. Bloom,et al.  CHEMICAL EFFECTS IN EXTERNAL HYPERSONIC FLOWS , 1962 .

[48]  David J. Rose,et al.  Basic Processes of Gaseous Electronics , 1956 .

[49]  Shao‐Chi Lin,et al.  Rate of Ionization behind Shock Waves in Air. I. Experimental Results , 1962 .

[50]  W. C. Walker,et al.  Preliminary Results on Photoelectric Yields of Pt and Ta and on Photoionization in O2 and N2 in the Vacuum Ultraviolet , 1953 .