Modeling small hydronium–water clusters

We have developed new potentials to model the interactions between H3O+ and H2O and used them to investigate small H3O+⋯(H2O)n clusters for n=1–7. The construction of the potentials uses monomer properties for the long-range interactions and perturbation theory for the short-range terms. We have extensively searched all the potential energy surfaces and discuss the low-energy minima that we have found. We extend the calculations for n=2, 4, and 5 by performing geometry optimizations using density functional theory, starting with minima found with the new model potential.

[1]  K. Szalewicz,et al.  Pair potential for water from symmetry-adapted perturbation theory , 1997 .

[2]  R. Saykally,et al.  Detection of the Hydronium Ion (H 3 O + ) by High-Resolution Infrared Spectroscopy , 1983 .

[3]  Kari Laasonen,et al.  Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water , 1995 .

[4]  A. Stone,et al.  Towards an accurate intermolecular potential for water , 1992 .

[5]  Dennis R. Salahub,et al.  Hydrated proton clusters and solvent effects on the proton transfer barrier: A density functional study , 1994 .

[6]  H. Schenk,et al.  Computing in Crystallography , 1978 .

[7]  M. Meot-ner,et al.  Filling of solvent shells about ions. 1. Thermochemical criteria and the effects of isomeric clusters , 1986 .

[8]  Michele Parrinello,et al.  On the Quantum Nature of the Shared Proton in Hydrogen Bonds , 1997, Science.

[9]  Hai-Ping Cheng,et al.  WATER CLUSTERS : FASCINATING HYDROGEN-BONDING NETWORKS, SOLVATION SHELL STRUCTURES, AND PROTON MOTION , 1998 .

[10]  P. Bunker,et al.  The inversion potential and rotation-inversion energy levels of H3O+and CH3- , 1982 .

[11]  Sandro L. Fornili,et al.  Hydration of the hydronium ion , 1986 .

[12]  Dennis R. Salahub,et al.  Hydrated proton clusters: Ab initio molecular dynamics simulation and simulated annealing , 1997 .

[13]  Anthony J. Stone,et al.  An intermolecular perturbation theory for the region of moderate overlap , 1984 .

[14]  Mark E. Tuckerman,et al.  An empirical valence bond model for proton transfer in water , 1998 .

[15]  H. Schaefer,et al.  The protonated water dimer: Extensive theoretical studies of H5O+2 , 1994 .

[16]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[17]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[18]  P. Bunker,et al.  A preliminary determination of the equilibrium geometry and inversion potential in H3O+ from experiment , 1984 .

[19]  Peter C. Jordan,et al.  Structure of H+(H2O)n clusters near the magic number n=21 , 1993 .

[20]  G. Corongiu,et al.  Theoretical Studies of H+(H2O)5 , 1995 .

[21]  The 20-hydrated hydronium ion cluster energy and structure , 1987 .

[22]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[23]  O. Matsuoka,et al.  CI study of the water dimer potential surface , 1976 .

[24]  E. Kochanski,et al.  Traps in modelling intermolecular three-body forces: example of the water system and protonated hydrates , 1994 .

[25]  H. Casimir,et al.  The Influence of Retardation on the London-van der Waals Forces , 1948 .

[26]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[27]  A. Stone,et al.  Local and non-local dispersion models , 1989 .

[28]  Peter C. Jordan,et al.  Empirical models for the hydration of protons , 1992 .

[29]  J. Krause,et al.  The dynamics of proton transfer in H5O2 , 1997 .

[30]  Claude Millot,et al.  Revised Anisotropic Site Potentials for the Water Dimer and Calculated Properties , 1998 .

[31]  K. Szalewicz,et al.  Comment on “On the importance of the fragment relaxation energy terms in the estimation of the basis set superposition error correction to the intermolecular interaction energy” [J. Chem. Phys. 104, 8821 (1996)] , 1998 .

[32]  E. Kochanski,et al.  About the nature of intermolecular three‐body forces in ionic systems: The case of protonated hydrates , 1994 .

[33]  K. Tang,et al.  An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients , 1984 .

[34]  E. Kochanski,et al.  Three-body forces effect in Monte Carlo studies of protonated hydrates , 1996 .

[35]  Sotiris S. Xantheas,et al.  On the importance of the fragment relaxation energy terms in the estimation of the basis set superposition error correction to the intermolecular interaction energy , 1996 .

[36]  E. Kochanski,et al.  Behavior and Evolution of the First 28 Protonated Hydrates from Monte Carlo Studies , 1995 .

[37]  V. Špirko,et al.  Anharmonic potential function and rotation-inversion energy levels of H3O+ , 1989 .

[38]  A. Stone,et al.  ANALYTICAL POTENTIALS FOR HF DIMER AND LARGER HF CLUSTERS FROM AB INITIO CALCULATIONS , 1998 .

[39]  D. O. Harris,et al.  A study of the structure and dynamics of the hydronium ion by high resolution infrared laser spectroscopy. III. The ν3 band of D3O , 1985 .

[40]  Kari Laasonen,et al.  Ab initio molecular dynamics simulation of the solvation and transport of H3O+ and OH- ions in water , 1995 .

[41]  Edward F. Valeev,et al.  The protonated water dimer: Brueckner methods remove the spurious C1 symmetry minimum , 1998 .

[42]  A. Stone,et al.  Matrix elements between determinantal wavefunctions of non-orthogonal orbitals , 1984 .

[43]  Sotiris S. Xantheas,et al.  AB INITIO STUDIES OF CYCLIC WATER CLUSTERS (H2O)N, N=1-6. III: COMPARISON OF DENSITY FUNCTIONAL WITH MP2 RESULTS , 1995 .

[44]  David J. Wales,et al.  Global minima of water clusters (H2O)n, n≤21, described by an empirical potential , 1998 .

[45]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[46]  J. Price,et al.  Vibrational spectroscopy of the hydrated hydronium cluster ions H3O+·(H2O)n (n=1, 2, 3) , 1989 .