Large-scale regression with non-convex loss and penalty

[1]  Alessandro Buccini,et al.  An ℓp-ℓq minimization method with cross-validation for the restoration of impulse noise contaminated images , 2020, J. Comput. Appl. Math..

[2]  L. Reichel,et al.  Modulus-based iterative methods for constrained ℓp–ℓq minimization , 2020, Inverse Problems.

[3]  Lothar Reichel,et al.  An $$\ell ^2-\ell ^q$$ℓ2-ℓq Regularization Method for Large Discrete Ill-Posed Problems , 2018, J. Sci. Comput..

[4]  Adelchi Azzalini,et al.  The Skew-Normal and Related Families , 2018 .

[5]  L. Reichel,et al.  Majorization–minimization generalized Krylov subspace methods for $${\ell _p}$$ℓp–$${\ell _q}$$ℓq optimization applied to image restoration , 2017 .

[6]  F. Sgallari,et al.  Constrained TVp-ℓ2 Model for Image Restoration , 2016, J. Sci. Comput..

[7]  Serena Morigi,et al.  Constrained TV$$_p$$p-$$\ell _2$$ℓ2 Model for Image Restoration , 2015 .

[8]  Serena Morigi,et al.  A Generalized Krylov Subspace Method for ℓp-ℓq Minimization , 2015, SIAM J. Sci. Comput..

[9]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[10]  A. Ghazalpour,et al.  Genetic regulation of mouse liver metabolite levels , 2014, Molecular systems biology.

[11]  Zhihui Wei,et al.  An iteratively approximated gradient projection algorithm for sparse signal reconstruction , 2014, Appl. Math. Comput..

[12]  L. Reichel,et al.  Large-scale Tikhonov regularization via reduction by orthogonal projection , 2012 .

[13]  Duan Li,et al.  Reweighted 1-Minimization for Sparse Solutions to Underdetermined Linear Systems , 2012, SIAM J. Optim..

[14]  T. Hastie,et al.  SparseNet: Coordinate Descent With Nonconvex Penalties , 2011, Journal of the American Statistical Association.

[15]  Raymond H. Chan,et al.  Half-Quadratic Algorithm for ℓp - ℓq Problems with Applications to TV-ℓ1 Image Restoration and Compressive Sensing , 2011, Efficient Algorithms for Global Optimization Methods in Computer Vision.

[16]  Brendt Wohlberg,et al.  Efficient Minimization Method for a Generalized Total Variation Functional , 2009, IEEE Transactions on Image Processing.

[17]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[18]  R. Ramlau,et al.  ON THE MINIMIZATION OF A TIKHONOV FUNCTIONAL WITH A NON-CONVEX SPARSITY CONSTRAINT , 2009 .

[19]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[20]  Raymond H. Chan,et al.  The Equivalence of Half-Quadratic Minimization and the Gradient Linearization Iteration , 2007, IEEE Transactions on Image Processing.

[21]  E. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[22]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[23]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[24]  Alan L. Yuille,et al.  The Concave-Convex Procedure , 2003, Neural Computation.

[25]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[26]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[27]  R. Horst,et al.  DC Programming: Overview , 1999 .

[28]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[29]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[30]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[31]  R. Wolke,et al.  Iteratively Reweighted Least Squares: Algorithms, Convergence Analysis, and Numerical Comparisons , 1988 .

[32]  T. Hassard,et al.  Applied Linear Regression , 2005 .

[33]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[34]  Francis Galton F.R.S. IV. Statistics by intercomparison, with remarks on the law of frequency of error , 1875 .