The Expectation-Maximization approach for Bayesian quantile regression

This paper deals with Bayesian linear quantile regression models based on a recently developed Expectation-Maximization Variable Selection (EMVS) method. By using additional latent variables, the proposed approach enjoys enormous computational savings compared to commonly used Markov Chain Monte Carlo (MCMC) algorithm. Using location-scale mixture representation of asymmetric Laplace distribution (ALD), we develop a rapid and efficient Expectation-Maximization (EM) algorithm, which is illustrated with several carefully designed simulation examples. We further apply the proposed method to construct financial index tracking portfolios.

[1]  D. Karlis An EM type algorithm for maximum likelihood estimation of the normal-inverse Gaussian distribution , 2002 .

[2]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[3]  H. Lian,et al.  Bayesian quantile regression for longitudinal data models , 2012 .

[4]  B. Cade,et al.  A gentle introduction to quantile regression for ecologists , 2003 .

[5]  Rahim Alhamzawi,et al.  Bayesian lasso binary quantile regression , 2013, Computational Statistics.

[6]  T. Choi,et al.  Penalized Gaussian Process Regression and Classification for High‐Dimensional Nonlinear Data , 2011, Biometrics.

[7]  Yuzo Maruyama,et al.  Fully Bayes factors with a generalized g-prior , 2008, 0801.4410.

[8]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[9]  Luping Zhao,et al.  A Bayesian Semiparametric Temporally-Stratified Proportional Hazards Model with Spatial Frailties. , 2012, Bayesian analysis.

[10]  M. Bottai,et al.  Quantile regression for longitudinal data using the asymmetric Laplace distribution. , 2007, Biostatistics.

[11]  Edward I. George,et al.  Empirical Bayes vs. Fully Bayes Variable Selection , 2008 .

[12]  L. Fahrmeir,et al.  Spike-and-Slab Priors for Function Selection in Structured Additive Regression Models , 2011, 1105.5250.

[13]  B. Peter BOOSTING FOR HIGH-DIMENSIONAL LINEAR MODELS , 2006 .

[14]  M. Clyde,et al.  Mixtures of g Priors for Bayesian Variable Selection , 2008 .

[15]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[16]  E. George,et al.  APPROACHES FOR BAYESIAN VARIABLE SELECTION , 1997 .

[17]  Veronika Rockova,et al.  EMVS: The EM Approach to Bayesian Variable Selection , 2014 .

[18]  Heng Lian,et al.  Bayesian quantile regression for partially linear additive models , 2013, Stat. Comput..

[19]  J. Kadane,et al.  Simultaneous Linear Quantile Regression: A Semiparametric Bayesian Approach , 2012 .

[20]  B. Reich,et al.  Bayesian Quantile Regression for Censored Data , 2013, Biometrics.

[21]  M. Fuentes,et al.  Journal of the American Statistical Association Bayesian Spatial Quantile Regression Bayesian Spatial Quantile Regression , 2022 .

[22]  Heng Lian,et al.  Bayesian Tobit quantile regression with single-index models , 2015 .

[23]  N. Zhang,et al.  Bayesian Variable Selection in Structured High-Dimensional Covariate Spaces With Applications in Genomics , 2010 .

[24]  Ruibin Xi,et al.  Bayesian regularized quantile regression , 2010 .

[25]  Anastasios Panagiotelis,et al.  Bayesian identification, selection and estimation of semiparametric functions in high-dimensional additive models , 2008 .

[26]  H. Kozumi,et al.  Gibbs sampling methods for Bayesian quantile regression , 2011 .

[27]  Keming Yu,et al.  Bayesian quantile regression , 2001 .

[28]  T. Fearn,et al.  Bayes model averaging with selection of regressors , 2002 .

[29]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[30]  Takuma Yoshida Asymptotics for penalized spline estimators in quantile regression , 2012, 1209.1156.

[31]  Yu Ryan Yue,et al.  Bayesian Tobit quantile regression model for medical expenditure panel survey data , 2012 .

[32]  Keming Yu,et al.  Quantile regression: applications and current research areas , 2003 .

[33]  Xiaodong Lin,et al.  Gene expression Gene selection using support vector machines with non-convex penalty , 2005 .

[34]  Robert B. Gramacy,et al.  Bayesian quantile regression for single-index models , 2011, Stat. Comput..