Random walk for self-stabilizing group communication in ad-hoc networks

We introduce a self-stabilizing group communication system for ad-hoc networks. The system design is based on random walks of mobile agents. Three possible settings for modeling the location of the processors in the ad-hoc network are presented; slow location change, complete random change, and neighbors with probability. The group membership algorithm is based on collecting and distributing information by a mobile agent. The new techniques support group membership and multicast, and also support resource allocation.

[1]  Bernadette Charron-Bost,et al.  On the impossibility of group membership , 1996, PODC '96.

[2]  Nancy A. Lynch,et al.  Specifying and using a partitionable group communication service , 1997, PODC '97.

[3]  Edsger W. Dijkstra,et al.  Self-stabilizing systems in spite of distributed control , 1974, CACM.

[4]  László Lovász,et al.  Random Walks on Graphs: A Survey , 1993 .

[5]  Shlomi Dolev,et al.  Self Stabilization , 2004, J. Aerosp. Comput. Inf. Commun..

[6]  Sukumar Ghosh,et al.  Agents, Distributed Algorithms, and Stabilization , 2000, COCOON.

[7]  Shlomi Dolev,et al.  Communication Adaptive Self-Stabilizing Group Membership Service , 2001, IEEE Trans. Parallel Distributed Syst..

[8]  Amos Israeli,et al.  Token management schemes and random walks yield self-stabilizing mutual exclusion , 1990, PODC '90.

[9]  Peter Winkler,et al.  Collisions Among Random Walks on a Graph , 1993, SIAM J. Discret. Math..

[10]  Gil Neiger A new look at membership services (extended abstract) , 1996, PODC '96.

[11]  Paul G. Spirakis,et al.  An efficient communication strategy for ad-hoc mobile networks , 2001, PODC '01.

[12]  Nancy A. Lynch,et al.  Fast allocation of nearby resources in a distributed system , 1980, STOC '80.

[13]  Rifaat A. Dayem Mobile Data and Wireless Lan Technologies , 1997 .

[14]  Uriel Feige A Fast Randomized LOGSPACE Algorithm for Graph Connectivity , 1996, Theor. Comput. Sci..

[15]  Philip K. McKinley,et al.  A token-based protocol for reliable, ordered multicast communication , 1989, Proceedings of the Eighth Symposium on Reliable Distributed Systems.

[16]  Manhoi Choy,et al.  Efficient fault-tolerant algorithms for distributed resource allocation , 1995, TOPL.

[17]  Uriel Feige,et al.  A Tight Lower Bound on the Cover Time for Random Walks on Graphs , 1995, Random Struct. Algorithms.

[18]  Idit Keidar,et al.  Group communication specifications: a comprehensive study , 2001, CSUR.

[19]  Tomasz Imielinski,et al.  Mobile Computing , 1996 .

[20]  Keith Marzullo,et al.  The Bancomat problem: an example of resource allocation in a partitionable asynchronous system , 2003, Theoretical Computer Science.

[21]  Toshimitsu Masuzawa,et al.  Self-Stabilizing Agent Traversal , 2001, WSS.

[22]  Paul G. Spirakis,et al.  Fundamental control algorithms in mobile networks , 1999, SPAA '99.

[23]  Eugene Styer,et al.  Improved algorithms for distributed resource allocation , 1988, PODC '88.

[24]  Christos H. Papadimitriou,et al.  On the Random Walk Method for Protocol Testing , 1994, CAV.

[25]  Edsger W. Dijkstra,et al.  Hierarchical ordering of sequential processes , 1971, Acta Informatica.

[26]  M. S. Corson,et al.  A highly adaptive distributed routing algorithm for mobile wireless networks , 1997, Proceedings of INFOCOM '97.

[27]  Louise E. Moser,et al.  Fast message ordering and membership using a logical token-passing ring , 1993, [1993] Proceedings. The 13th International Conference on Distributed Computing Systems.