General-Dimensional Constrained Delaunay and Constrained Regular Triangulations, I: Combinatorial Properties

Two-dimensional constrained Delaunay triangulations are geometric structures that are popular for interpolation and mesh generation because they respect the shapes of planar domains, they have “nicely shaped” triangles that optimize several criteria, and they are easy to construct and update. The present work generalizes constrained Delaunay triangulations (CDTs) to higher dimensions and describes constrained variants of regular triangulations, here christened weighted CDTs and constrained regular triangulations. CDTs and weighted CDTs are powerful and practical models of geometric domains, especially in two and three dimensions.The main contributions are rigorous, theory-tested definitions of CDTs and piecewise linear complexes (geometric domains that incorporate nonconvex faces with “internal” boundaries), a characterization of the combinatorial properties of CDTs and weighted CDTs (including a generalization of the Delaunay Lemma), the proof of several optimality properties of CDTs when they are used for piecewise linear interpolation, and a simple and useful condition that guarantees that a domain has a CDT. These results provide foundations for reasoning about CDTs and proving the correctness of algorithms. Later articles in this series discuss algorithms for constructing and updating CDTs.

[1]  Steven Fortune,et al.  Voronoi Diagrams and Delaunay Triangulations , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[2]  Franz Aurenhammer,et al.  Pseudotriangulations from Surfaces and a Novel Type of Edge Flip , 2003, SIAM J. Comput..

[3]  L. Paul Chew,et al.  Guaranteed-quality mesh generation for curved surfaces , 1993, SCG '93.

[4]  Tiow Seng Tan,et al.  An upper bound for conforming Delaunay triangulations , 1992, SCG '92.

[5]  Jonathan Richard Shewchuk,et al.  Sweep algorithms for constructing higher-dimensional constrained Delaunay triangulations , 2000, SCG '00.

[6]  E. Schönhardt,et al.  Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .

[7]  R. B. Simpson,et al.  On optimal interpolation triangle incidences , 1989 .

[8]  Franz Aurenhammer,et al.  Pseudo-tetrahedral complexes , 2005, EuroCG.

[9]  J. Shewchuk,et al.  Delaunay refinement mesh generation , 1997 .

[10]  Herbert Edelsbrunner,et al.  Sliver exudation , 2000, J. ACM.

[11]  Jonathan Richard Shewchuk,et al.  Mesh generation for domains with small angles , 2000, SCG '00.

[12]  Gary L. Miller,et al.  Control Volume Meshes Using Sphere Packing , 1998, IRREGULAR.

[13]  H. Hadwiger Vorlesungen über Inhalt, Oberfläche und Isoperimetrie , 1957 .

[14]  H. Hadwiger,et al.  Inhalt, Oberfläche und Isoperimetrie , 1975 .

[15]  David Eppstein,et al.  MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .

[16]  D. T. Lee,et al.  Generalized delaunay triangulation for planar graphs , 1986, Discret. Comput. Geom..

[17]  Mariette Yvinec,et al.  Conforming Delaunay triangulations in 3D , 2002, SCG '02.

[18]  Sheung-Hung Poon,et al.  Graded conforming Delaunay tetrahedralization with bounded radius-edge ratio , 2003, SODA '03.

[19]  J. Ruppert Results on triangulation and high quality mesh generation , 1992 .

[20]  Kevin Q. Brown,et al.  Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..

[21]  Carol Hazlewood,et al.  Approximating constrained tetrahedrizations , 1993, Comput. Aided Geom. Des..

[22]  S. Rippa Long and thin triangles can be good for linear interpolation , 1992 .

[23]  Paul-Louis George,et al.  Delaunay triangulation and meshing : application to finite elements , 1998 .

[24]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[25]  Leonidas J. Guibas,et al.  Kinetic data structures: a state of the art report , 1998 .

[26]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[27]  Raimund Seidel,et al.  On the difficulty of triangulating three-dimensional Nonconvex Polyhedra , 1992, Discret. Comput. Geom..

[28]  G. C. Shephard,et al.  A New Look at Euler's Theorem for Polyhedra , 1994 .

[29]  Nigel P. Weatherill,et al.  Efficient three-dimensional grid generation using the Delaunay triangulation , 1992 .

[30]  Noel Walkington,et al.  Robust Three Dimensional Delaunay Refinement , 2004, IMR.

[31]  Herbert Edelsbrunner,et al.  Sliver exudation , 1999, SCG '99.

[32]  Jonathan Richard Shewchuk,et al.  A condition guaranteeing the existence of higher-dimensional constrained Delaunay triangulations , 1998, SCG '98.

[33]  Jonathan Richard Shewchuk,et al.  Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..

[34]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[35]  L. Paul Chew,et al.  Constrained Delaunay triangulations , 1987, SCG '87.

[36]  V. T. Rajan,et al.  Optimality of the Delaunay triangulation in Rd , 1991, SCG '91.

[37]  Abel Gomes,et al.  A Concise B-Rep Data Structure For Stratified Subanalytic Objects , 2003, Symposium on Geometry Processing.

[38]  Rex A. Dwyer Higher-dimensional voronoi diagrams in linear expected time , 1991, Discret. Comput. Geom..

[39]  Tamal K. Dey,et al.  Quality meshing with weighted Delaunay refinement , 2002, SODA '02.

[40]  Samuel Rippa,et al.  Minimal roughness property of the Delaunay triangulation , 1990, Comput. Aided Geom. Des..

[41]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[42]  Klaus Gärtner,et al.  Meshing Piecewise Linear Complexes by Constrained Delaunay Tetrahedralizations , 2005, IMR.

[43]  C. Lawson Software for C1 interpolation , 1977 .

[44]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..

[45]  L. Paul Chew,et al.  Guaranteed-quality Delaunay meshing in 3D (short version) , 1997, SCG '97.

[46]  P. L. Powar,et al.  Minimal roughness property of the Delaunay triangulation: a shorter approach , 1992, Comput. Aided Geom. Des..

[47]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[48]  Jonathan Richard Shewchuk,et al.  Constrained Delaunay Tetrahedralizations and Provably Good Boundary Recovery , 2002, IMR.

[49]  Herbert Edelsbrunner,et al.  An acyclicity theorem for cell complexes in d dimensions , 1989, SCG '89.

[50]  V. T. Rajan Optimality of the Delaunay triangulation in ℝd , 1994, Discret. Comput. Geom..

[51]  Nigel P. Weatherill,et al.  Grid generation by the delaunay triangulation , 1994 .

[52]  Herbert Edelsbrunner,et al.  An Experimental Study of Sliver Exudation , 2002, Engineering with Computers.

[53]  David M. Mount,et al.  A point-placement strategy for conforming Delaunay tetrahedralization , 2000, SODA '00.

[54]  Xiang-Yang Li,et al.  Generating well-shaped Delaunay meshed in 3D , 2001, SODA '01.

[55]  S. Waldron The Error in Linear Interpolation at the Vertices of a Simplex , 1998 .

[56]  Jonathan Richard Shewchuk,et al.  The Strange Complexity of Constrained Delaunay Triangulation , 2003, CCCG.

[57]  R. Sibson,et al.  A brief description of natural neighbor interpolation , 1981 .

[58]  L. Paul Chew,et al.  Guaranteed-Quality Triangular Meshes , 1989 .

[59]  G. Ziegler Lectures on Polytopes , 1994 .

[60]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..