General-Dimensional Constrained Delaunay and Constrained Regular Triangulations, I: Combinatorial Properties
暂无分享,去创建一个
[1] Steven Fortune,et al. Voronoi Diagrams and Delaunay Triangulations , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..
[2] Franz Aurenhammer,et al. Pseudotriangulations from Surfaces and a Novel Type of Edge Flip , 2003, SIAM J. Comput..
[3] L. Paul Chew,et al. Guaranteed-quality mesh generation for curved surfaces , 1993, SCG '93.
[4] Tiow Seng Tan,et al. An upper bound for conforming Delaunay triangulations , 1992, SCG '92.
[5] Jonathan Richard Shewchuk,et al. Sweep algorithms for constructing higher-dimensional constrained Delaunay triangulations , 2000, SCG '00.
[6] E. Schönhardt,et al. Über die Zerlegung von Dreieckspolyedern in Tetraeder , 1928 .
[7] R. B. Simpson,et al. On optimal interpolation triangle incidences , 1989 .
[8] Franz Aurenhammer,et al. Pseudo-tetrahedral complexes , 2005, EuroCG.
[9] J. Shewchuk,et al. Delaunay refinement mesh generation , 1997 .
[10] Herbert Edelsbrunner,et al. Sliver exudation , 2000, J. ACM.
[11] Jonathan Richard Shewchuk,et al. Mesh generation for domains with small angles , 2000, SCG '00.
[12] Gary L. Miller,et al. Control Volume Meshes Using Sphere Packing , 1998, IRREGULAR.
[13] H. Hadwiger. Vorlesungen über Inhalt, Oberfläche und Isoperimetrie , 1957 .
[14] H. Hadwiger,et al. Inhalt, Oberfläche und Isoperimetrie , 1975 .
[15] David Eppstein,et al. MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .
[16] D. T. Lee,et al. Generalized delaunay triangulation for planar graphs , 1986, Discret. Comput. Geom..
[17] Mariette Yvinec,et al. Conforming Delaunay triangulations in 3D , 2002, SCG '02.
[18] Sheung-Hung Poon,et al. Graded conforming Delaunay tetrahedralization with bounded radius-edge ratio , 2003, SODA '03.
[19] J. Ruppert. Results on triangulation and high quality mesh generation , 1992 .
[20] Kevin Q. Brown,et al. Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..
[21] Carol Hazlewood,et al. Approximating constrained tetrahedrizations , 1993, Comput. Aided Geom. Des..
[22] S. Rippa. Long and thin triangles can be good for linear interpolation , 1992 .
[23] Paul-Louis George,et al. Delaunay triangulation and meshing : application to finite elements , 1998 .
[24] C. Lawson. Software for C1 Surface Interpolation , 1977 .
[25] Leonidas J. Guibas,et al. Kinetic data structures: a state of the art report , 1998 .
[26] Adrian Bowyer,et al. Computing Dirichlet Tessellations , 1981, Comput. J..
[27] Raimund Seidel,et al. On the difficulty of triangulating three-dimensional Nonconvex Polyhedra , 1992, Discret. Comput. Geom..
[28] G. C. Shephard,et al. A New Look at Euler's Theorem for Polyhedra , 1994 .
[29] Nigel P. Weatherill,et al. Efficient three-dimensional grid generation using the Delaunay triangulation , 1992 .
[30] Noel Walkington,et al. Robust Three Dimensional Delaunay Refinement , 2004, IMR.
[31] Herbert Edelsbrunner,et al. Sliver exudation , 1999, SCG '99.
[32] Jonathan Richard Shewchuk,et al. A condition guaranteeing the existence of higher-dimensional constrained Delaunay triangulations , 1998, SCG '98.
[33] Jonathan Richard Shewchuk,et al. Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..
[34] Franz Aurenhammer,et al. Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..
[35] L. Paul Chew,et al. Constrained Delaunay triangulations , 1987, SCG '87.
[36] V. T. Rajan,et al. Optimality of the Delaunay triangulation in Rd , 1991, SCG '91.
[37] Abel Gomes,et al. A Concise B-Rep Data Structure For Stratified Subanalytic Objects , 2003, Symposium on Geometry Processing.
[38] Rex A. Dwyer. Higher-dimensional voronoi diagrams in linear expected time , 1991, Discret. Comput. Geom..
[39] Tamal K. Dey,et al. Quality meshing with weighted Delaunay refinement , 2002, SODA '02.
[40] Samuel Rippa,et al. Minimal roughness property of the Delaunay triangulation , 1990, Comput. Aided Geom. Des..
[41] Herbert Edelsbrunner,et al. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.
[42] Klaus Gärtner,et al. Meshing Piecewise Linear Complexes by Constrained Delaunay Tetrahedralizations , 2005, IMR.
[43] C. Lawson. Software for C1 interpolation , 1977 .
[44] Raimund Seidel,et al. Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..
[45] L. Paul Chew,et al. Guaranteed-quality Delaunay meshing in 3D (short version) , 1997, SCG '97.
[46] P. L. Powar,et al. Minimal roughness property of the Delaunay triangulation: a shorter approach , 1992, Comput. Aided Geom. Des..
[47] Kenneth L. Clarkson,et al. Applications of random sampling in computational geometry, II , 1988, SCG '88.
[48] Jonathan Richard Shewchuk,et al. Constrained Delaunay Tetrahedralizations and Provably Good Boundary Recovery , 2002, IMR.
[49] Herbert Edelsbrunner,et al. An acyclicity theorem for cell complexes in d dimensions , 1989, SCG '89.
[50] V. T. Rajan. Optimality of the Delaunay triangulation in ℝd , 1994, Discret. Comput. Geom..
[51] Nigel P. Weatherill,et al. Grid generation by the delaunay triangulation , 1994 .
[52] Herbert Edelsbrunner,et al. An Experimental Study of Sliver Exudation , 2002, Engineering with Computers.
[53] David M. Mount,et al. A point-placement strategy for conforming Delaunay tetrahedralization , 2000, SODA '00.
[54] Xiang-Yang Li,et al. Generating well-shaped Delaunay meshed in 3D , 2001, SODA '01.
[55] S. Waldron. The Error in Linear Interpolation at the Vertices of a Simplex , 1998 .
[56] Jonathan Richard Shewchuk,et al. The Strange Complexity of Constrained Delaunay Triangulation , 2003, CCCG.
[57] R. Sibson,et al. A brief description of natural neighbor interpolation , 1981 .
[58] L. Paul Chew,et al. Guaranteed-Quality Triangular Meshes , 1989 .
[59] G. Ziegler. Lectures on Polytopes , 1994 .
[60] D. F. Watson. Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..