The short isoform of extended synaptotagmin-2 controls Ca2+ dynamics in T cells via interaction with STIM1

[1]  J. Boulanger,et al.  E-syt1 Re-arranges STIM1 Clusters to Stabilize Ring-shaped ER-PM Contact Sites and Accelerate Ca2+ Store Replenishment , 2019, Scientific Reports.

[2]  R. Sun,et al.  The Ca2+ sensor STIM1 regulates type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum , 2018, Nature Immunology.

[3]  R. Sun,et al.  The Ca2+ sensor STIM1 regulates type I interferon response by retaining the signaling adaptor STING at the endoplasmic reticulum , 2018, Nature Immunology.

[4]  M. Pellegrini,et al.  CRACR2A-Mediated TCR Signaling Promotes Local Effector Th1 and Th17 Responses , 2018, The Journal of Immunology.

[5]  P. De Camilli,et al.  Ca2+ releases E‐Syt1 autoinhibition to couple ER‐plasma membrane tethering with lipid transport , 2018, The EMBO journal.

[6]  P. De Camilli,et al.  Endoplasmic Reticulum-Plasma Membrane Contact Sites. , 2017, Annual review of biochemistry.

[7]  Daniel R. Gulbranson,et al.  Extended synaptotagmins are Ca2+-dependent lipid transfer proteins at membrane contact sites , 2016, Proceedings of the National Academy of Sciences.

[8]  Y. Gwack,et al.  A large Rab GTPase encoded by CRACR2A is a component of subsynaptic vesicles that transmit T cell activation signals , 2016, Science Signaling.

[9]  P. Ping,et al.  Junctophilin-4, a component of the endoplasmic reticulum–plasma membrane junctions, regulates Ca2+ dynamics in T cells , 2016, Proceedings of the National Academy of Sciences.

[10]  Anjana Rao,et al.  TMEM110 regulates the maintenance and remodeling of mammalian ER–plasma membrane junctions competent for STIM–ORAI signaling , 2015, Proceedings of the National Academy of Sciences.

[11]  P. De Camilli,et al.  Triggered Ca2+ influx is required for extended synaptotagmin 1‐induced ER‐plasma membrane tethering , 2015, The EMBO journal.

[12]  Liangyi Chen,et al.  Proteomic mapping of ER-PM junctions identifies STIMATE as regulator of Ca2+ influx , 2015, Nature Cell Biology.

[13]  S. Muallem,et al.  Translocation between PI(4,5)P2-poor and PI(4,5)P2-rich microdomains during store depletion determines STIM1 conformation and Orai1 gating , 2014, Nature Communications.

[14]  P. De Camilli,et al.  Structure of a lipid-bound Extended-Synaptotagmin indicates a role in lipid transfer , 2014, Nature.

[15]  J. Liao,et al.  Feedback regulation of receptor-induced Ca2+ signaling mediated by E-Syt1 and Nir2 at endoplasmic reticulum-plasma membrane junctions. , 2013, Cell reports.

[16]  S. Colombo,et al.  PI(4,5)P2-Dependent and Ca2+-Regulated ER-PM Interactions Mediated by the Extended Synaptotagmins , 2013, Cell.

[17]  Y. Gwack,et al.  Junctate is a Ca2+-sensing structural component of Orai1 and stromal interaction molecule 1 (STIM1) , 2012, Proceedings of the National Academy of Sciences.

[18]  E. Reuveny,et al.  SARAF Inactivates the Store Operated Calcium Entry Machinery to Prevent Excess Calcium Refilling , 2012, Cell.

[19]  M. Prakriya,et al.  Gated regulation of CRAC channel ion selectivity by STIM1 , 2011, Nature.

[20]  Richard S Lewis,et al.  Stoichiometric requirements for trapping and gating of Ca2+ release-activated Ca2+ (CRAC) channels by stromal interaction molecule 1 (STIM1) , 2011, Proceedings of the National Academy of Sciences.

[21]  T. Meyer,et al.  STIM proteins and the endoplasmic reticulum-plasma membrane junctions. , 2011, Annual review of biochemistry.

[22]  M. Doherty,et al.  Evidence for an interaction between Golli and STIM1 in store-operated calcium entry , 2010, The Biochemical journal.

[23]  Y. Gwack,et al.  A novel EF-hand protein, CRACR2A, is a cytosolic Ca2+ sensor that stabilizes CRAC channels in T cells , 2010, Nature Cell Biology.

[24]  Y. Gwack,et al.  The Intracellular Loop of Orai1 Plays a Central Role in Fast Inactivation of Ca2+ Release-activated Ca2+ Channels* , 2009, The Journal of Biological Chemistry.

[25]  W. Nickel,et al.  A Conserved, Lipid‐Mediated Sorting Mechanism of Yeast Ist2 and Mammalian STIM Proteins to the Peripheral ER , 2009, Traffic.

[26]  L. Orci,et al.  STIM1-induced precortical and cortical subdomains of the endoplasmic reticulum , 2009, Proceedings of the National Academy of Sciences.

[27]  G. Barritt,et al.  Properties of Orai1 mediated store‐operated current depend on the expression levels of STIM1 and Orai1 proteins , 2009, The Journal of physiology.

[28]  Elizabeth D. Covington,et al.  STIM1 Clusters and Activates CRAC Channels via Direct Binding of a Cytosolic Domain to Orai1 , 2009, Cell.

[29]  Joseph P. Yuan,et al.  SOAR and the polybasic STIM1 domains gate and regulate the Orai channels , 2009, Nature Cell Biology.

[30]  Murali Prakriya,et al.  Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation , 2008, Nature.

[31]  L. Hunyady,et al.  Visualization and Manipulation of Plasma Membrane-Endoplasmic Reticulum Contact Sites Indicates the Presence of Additional Molecular Components within the STIM1-Orai1 Complex*♦ , 2007, Journal of Biological Chemistry.

[32]  T. Südhof,et al.  E-Syts, a family of membranous Ca2+-sensor proteins with multiple C2 domains , 2007, Proceedings of the National Academy of Sciences.

[33]  JoAnn Buchanan,et al.  Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane , 2006, The Journal of cell biology.

[34]  Tobias Meyer,et al.  STIM Is a Ca2+ Sensor Essential for Ca2+-Store-Depletion-Triggered Ca2+ Influx , 2005, Current Biology.

[35]  S. Wagner,et al.  STIM1, an essential and conserved component of store-operated Ca2+ channel function , 2005, The Journal of cell biology.

[36]  M. Berridge,et al.  Calcium: Calcium signalling: dynamics, homeostasis and remodelling , 2003, Nature Reviews Molecular Cell Biology.

[37]  H. Takeshima,et al.  Immuno-proteomic approach to excitation--contraction coupling in skeletal and cardiac muscle: molecular insights revealed by the mitsugumins. , 2008, Cell calcium.