Relating tripartite quantum discord with multisite entanglement and their performance in the one-dimensional anisotropic XXZ model

In order to define quantum correlations, there are two important paradigms in quantum information theory, viz. the information-theoretic and the entanglement-separability ones. In this paper, we give an analytical relation between two measures of quantum correlations. One of them is related to the monogamy of squared bipartite quantum discord, which is a information-theoretic multipartite quantum correlation measure, while the other is the generalized geometric measure which lies in the entanglement-separability paradigm. We find a certain cone-like region on the two-dimensional spaces spanned by the two measures. Moreover, we have investigated the quantum phase transition with the two measures in the anisotropic spin XXZ model by exploiting the quantum renormalization group method.

[1]  R. Jafari,et al.  Renormalization of concurrence: The application of the quantum renormalization group to quantum-information systems , 2007, 0710.5843.

[2]  H. Imai,et al.  Sufficient and necessary condition for zero quantum entropy rates under any coupling to the environment. , 2010, Physical review letters.

[3]  F. F. Fanchini,et al.  Conservation law for distributed entanglement of formation and quantum discord , 2010, 1006.2460.

[4]  Z. D. Wang,et al.  Multipartite quantum correlation and entanglement in four-qubit pure states , 2007 .

[5]  E. Milotti,et al.  Quantum explorations: from the waltz of the Pauli exclusion principle to the rock of the spontaneous collapse , 2015 .

[6]  I. S. Oliveira,et al.  Environment-induced sudden transition in quantum discord dynamics. , 2011, Physical review letters.

[7]  M. Paris,et al.  Gaussian quantum discord. , 2010, Physical review letters.

[8]  R. Jafari,et al.  Renormalization of entanglement in the anisotropic Heisenberg ( X X Z ) model , 2007, 0711.2358.

[9]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[10]  D A Lidar,et al.  Quantum phase transitions and bipartite entanglement. , 2004, Physical review letters.

[11]  R. Zambrini,et al.  Genuine quantum and classical correlations in multipartite systems. , 2011, Physical review letters.

[12]  Zheng-Fu Han,et al.  Performance of various correlation measures in quantum phase transitions using the quantum renormalization-group method , 2012 .

[13]  G. Rigolin,et al.  Quantum correlations in spin chains at finite temperatures and quantum phase transitions. , 2010, Physical review letters.

[14]  Light Cone-Like Behavior of Quantum Monogamy Score and Multisite Entanglement , 2011, 1109.4318.

[15]  A. Datta,et al.  Quantum versus classical correlations in Gaussian states. , 2010, Physical review letters.

[16]  A. Winter,et al.  Monogamy of quantum entanglement and other correlations , 2003, quant-ph/0310037.

[17]  C. H. Bennett,et al.  Unextendible product bases and bound entanglement , 1998, quant-ph/9808030.

[18]  Raoul Dillenschneider,et al.  Quantum discord and quantum phase transition in spin chains , 2008, 0809.1723.

[19]  M. Horodecki,et al.  Local indistinguishability: more nonlocality with less entanglement. , 2003, Physical review letters.

[20]  Animesh Datta,et al.  Quantum discord and the power of one qubit. , 2007, Physical review letters.

[21]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[22]  F. Verstraete,et al.  General monogamy inequality for bipartite qubit entanglement. , 2005, Physical review letters.

[23]  T. Paterek,et al.  Unified view of quantum and classical correlations. , 2009, Physical review letters.

[24]  Z. D. Wang,et al.  Multipartite entanglement in four-qubit cluster-class states , 2007, 0709.4642.

[25]  M. S. Sarandy Classical correlation and quantum discord in critical systems , 2009, 0905.1347.

[26]  B. Lanyon,et al.  Experimental quantum computing without entanglement. , 2008, Physical review letters.

[27]  Zhenghan Wang,et al.  Exploring multipartite quantum correlations with the square of quantum discord , 2012, 1206.2096.