Histone modifications at human enhancers reflect global cell-type-specific gene expression

[1]  H. Aburatani,et al.  Cohesin mediates transcriptional insulation by CCCTC-binding factor , 2008, Nature.

[2]  Manolis Kellis,et al.  Reliable prediction of regulator targets using 12 Drosophila genomes. , 2007, Genome research.

[3]  Wei Li,et al.  Model-based analysis of two-color arrays (MA2C) , 2007, Genome Biology.

[4]  Jane M J Lin,et al.  Identification and Characterization of Cell Type–Specific and Ubiquitous Chromatin Regulatory Structures in the Human Genome , 2007, PLoS genetics.

[5]  Allen D. Delaney,et al.  Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing , 2007, Nature Methods.

[6]  A. Mortazavi,et al.  Genome-Wide Mapping of in Vivo Protein-DNA Interactions , 2007, Science.

[7]  Shane C. Dillon,et al.  The landscape of histone modifications across 1% of the human genome in five human cell lines. , 2007, Genome research.

[8]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[9]  Michael Q. Zhang,et al.  Analysis of the Vertebrate Insulator Protein CTCF-Binding Sites in the Human Genome , 2007, Cell.

[10]  Nathaniel D. Heintzman,et al.  Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome , 2007, Nature Genetics.

[11]  Nathaniel D. Heintzman,et al.  The gateway to transcription: identifying, characterizing and understanding promoters in the eukaryotic genome , 2007, Cellular and Molecular Life Sciences.

[12]  Kevin Struhl,et al.  Relationships between p63 binding, DNA sequence, transcription activity, and biological function in human cells. , 2006, Molecular cell.

[13]  Clifford A. Meyer,et al.  Genome-wide analysis of estrogen receptor binding sites , 2006, Nature Genetics.

[14]  Michael R. Green,et al.  Transcriptional regulatory elements in the human genome. , 2006, Annual review of genomics and human genetics.

[15]  Mitchell D. Probasco,et al.  Feeder-independent culture of human embryonic stem cells , 2006, Nature Methods.

[16]  T. Wolfsberg,et al.  DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays , 2006, Nature Methods.

[17]  Karl P Nightingale,et al.  Histone modifications: signalling receptors and potential elements of a heritable epigenetic code. , 2006, Current opinion in genetics & development.

[18]  Z. Weng,et al.  A Global Map of p53 Transcription-Factor Binding Sites in the Human Genome , 2006, Cell.

[19]  Myles A Brown,et al.  Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. , 2005, Molecular cell.

[20]  Leah Barrera,et al.  A high-resolution map of active promoters in the human genome , 2005, Nature.

[21]  Francesca Chiaromonte,et al.  Evaluation of regulatory potential and conservation scores for detecting cis-regulatory modules in aligned mammalian genome sequences. , 2005, Genome research.

[22]  M. Bucan,et al.  Promoter features related to tissue specificity as measured by Shannon entropy , 2005, Genome Biology.

[23]  K. Lindblad-Toh,et al.  Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals , 2005, Nature.

[24]  Paul T. Groth,et al.  The ENCODE (ENCyclopedia Of DNA Elements) Project , 2004, Science.

[25]  R. Medcalf,et al.  The t-PA -7351C>T enhancer polymorphism decreases Sp1 and Sp3 protein binding affinity and transcriptional responsiveness to retinoic acid. , 2004, Blood.

[26]  A. Brivanlou,et al.  Signal Transduction and the Control of Gene Expression , 2002, Science.

[27]  A. Schedl,et al.  Aniridia-associated translocations, DNase hypersensitivity, sequence comparison and transgenic analysis redefine the functional domain of PAX6. , 2001, Human molecular genetics.