Fabrication of silica-coated magnetic nanoparticles with highly photoluminescent lanthanide probes.

Bi-functional nanoparticles (NPs) that consist of silica-coated magnetic cores and luminescent lanthanide (Ln) ions anchored on the silica surface via organic linker molecules are reported. Compared to individual Ln ions, the hybrid NPs show a drastically enhanced photoluminescence due to the efficient ligand-to-metal energy transfer in the Ln-loaded NPs: the new bi-functional NPs could be used in a variety of biological applications involving magnetic separation and optical detection.

[1]  K. Lu,et al.  Unusual Robust Luminescent Porous Frameworks Self-Assembled from Lanthanide Ions and 2,2‘-Bipyridine-4,4‘-dicarboxylate , 2006 .

[2]  J. Bünzli Benefiting from the unique properties of lanthanide ions. , 2006, Accounts of chemical research.

[3]  Craig R Malloy,et al.  MRI thermometry based on PARACEST agents. , 2005, Journal of the American Chemical Society.

[4]  R. Shunmugam,et al.  Unique emission from polymer based lanthanide alloys. , 2005, Journal of the American Chemical Society.

[5]  Dong Kyun Seo,et al.  Preparation of Large Transparent Silica Monoliths with Embedded Photoluminescent CdSe@ZnS Core/Shell Quantum Dots , 2005 .

[6]  Dai-Wen Pang,et al.  Biofunctionalization of fluorescent-magnetic-bifunctional nanospheres and their applications. , 2005, Chemical communications.

[7]  M. Shim,et al.  γ-Fe2O3/II−VI Sulfide Nanocrystal Heterojunctions , 2005 .

[8]  Donghoon Lee,et al.  Optical and MRI multifunctional nanoprobe for targeting gliomas. , 2005, Nano letters.

[9]  Jinkyu Lee,et al.  Multifunctional nanoparticles possessing a "magnetic motor effect" for drug or gene delivery. , 2005, Angewandte Chemie.

[10]  Hooisweng Ow,et al.  Bright and stable core-shell fluorescent silica nanoparticles. , 2005, Nano letters.

[11]  G. Sukhorukov,et al.  Luminescent polymer microcapsules addressable by a magnetic field. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[12]  Zeev Rosenzweig,et al.  Superparamagnetic Fe2O3 Beads−CdSe/ZnS Quantum Dots Core−Shell Nanocomposite Particles for Cell Separation , 2004 .

[13]  A Dean Sherry,et al.  A paramagnetic CEST agent for imaging glucose by MRI. , 2003, Journal of the American Chemical Society.

[14]  Jeffrey G. Reifenberger,et al.  Emission Polarization of Europium and Terbium Chelates , 2003 .

[15]  A. M. Pires,et al.  Characterization and spectroscopic studies of Eu3+ and Tb3+ complexes with 2,2′-bipyridine-4,4′-dicarboxylic acid , 2002 .

[16]  H. Rensmo,et al.  Electron Spectroscopic Studies of Bis-(2,2'-bipyridine)-(4,4'-dicarboxy-2,2'-bipyridine)-ruthenium(II) and Bis-(2,2'-bipyridine)-(4,4'-dicarboxy-2,2'-bipyridine)-osmium(II) adsorbed on Nanostructured TiO2 and ZnO Surfaces , 2002 .

[17]  Younan Xia,et al.  Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol−Gel Approach , 2002 .

[18]  J. L. Woolfrey,et al.  Vibrational Spectroscopic Study of the Coordination of (2,2‘-Bipyridyl-4,4‘-dicarboxylic acid)ruthenium(II) Complexes to the Surface of Nanocrystalline Titania , 1998 .

[19]  K. Gordon,et al.  In situ infrared spectroscopic analysis of the adsorption of ruthenium(II) bipyridyl dicarboxylic acid photosensitisers to TiO2 in aqueous solutions , 1997 .

[20]  Vincenzo Balzani,et al.  Luminescent and Redox-Active Polynuclear Transition Metal Complexes. , 1996, Chemical reviews.

[21]  Y. Wada,et al.  Importance of binding states between photosensitizing molecules and the TiO2 surface for efficiency in a dye-sensitized solar cell , 1995 .

[22]  L. K. Patterson,et al.  Photochemistry of Ru(bpy)2(dcbpy)2+ on Al2O3 and TiO2 Surfaces. An Insight into the Mechanism of Photosensitization , 1995 .

[23]  B. W. Erickson,et al.  Molecular-Level Electron Transfer and Excited State Assemblies on Surfaces of Metal Oxides and Glass , 1994 .

[24]  Jean-Marie Lehn,et al.  Perspectives in Supramolecular Chemistry—From Molecular Recognition towards Molecular Information Processing and Self‐Organization , 1990 .