Effects of dark sectors' mutual interaction on the growth of structures

We present a general formalism to study the growth of dark matter perturbations when dark energy perturbations and interactions between dark sectors are present. We show that the dynamical stability on the growth of structure depends on the form of coupling between dark sectors. By taking the appropriate coupling which enables the stable growth of structure, we find that the effect of the interaction between dark sectors overwhelms that of dark energy perturbation on the growth of dark matter perturbation. Due to the influence of the interaction, the growth index can differ from the value without interaction by an amount up to the observational sensibility, which provides an opportunity to probe the interaction between dark sectors through future observations on the growth of structure.

[1]  R. Maartens,et al.  The growth of structure in interacting dark energy models , 2009, 0905.0492.

[2]  A. Berera,et al.  On the large-scale instability in interacting dark energy and dark matter fluids , 2009, 0901.3272.

[3]  V. Pettorino,et al.  Hydrodynamical N-body simulations of coupled dark energy cosmologies , 2008, 0812.3901.

[4]  B. Moraes,et al.  The growth of matter perturbations in f(R) models , 2008, 0809.3374.

[5]  Jiliang Jing,et al.  Dynamics of an interacting dark energy model in Einstein and loop quantum cosmology , 2008, 0808.3482.

[6]  Y. Gong The growth factor parameterization and modified gravity , 2008 .

[7]  Y. Gong Growth factor parametrization and modified gravity , 2008, 0808.1316.

[8]  Bin Wang,et al.  Stability of the curvature perturbation in dark sectors' mutual interacting models , 2008, 0807.3471.

[9]  A. Riotto,et al.  Parameterizing the effect of dark energy perturbations on the growth of structures , 2008, 0807.3343.

[10]  L. Amendola,et al.  Quintessence cosmologies with a growing matter component , 2008 .

[11]  D. Pavón,et al.  Toward a solution of the coincidence problem , 2008, 0806.2116.

[12]  W. M. Wood-Vasey,et al.  Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets , 2008, 0804.4142.

[13]  E. Majerotto,et al.  Large-scale instability in interacting dark energy and dark matter fluids , 2008, 0804.0232.

[14]  L. Colombo,et al.  DARK MATTER–DARK ENERGY COUPLING BIASING PARAMETER ESTIMATES FROM COSMIC MICROWAVE BACKGROUND DATA , 2008, 0804.0285.

[15]  C. Feng,et al.  Observational constraints on the dark energy and dark matter mutual coupling , 2008, 0804.0110.

[16]  Shuang-Nan Zhang,et al.  How to distinguish dark energy and modified gravity , 2008, 0803.3292.

[17]  D. Polarski,et al.  The growth of matter perturbations in some scalar–tensor DE models , 2008, 0802.4196.

[18]  Alexandre Refregier,et al.  The Dark UNiverse Explorer (DUNE): proposal to ESA’s cosmic vision , 2008, 0802.2522.

[19]  Bin Wang,et al.  Effects of the interaction between dark energy and dark matter on cosmological parameters , 2008, 0801.4233.

[20]  E. Bertschinger,et al.  Distinguishing modified gravity from dark energy , 2008, 0801.2431.

[21]  Roy Maartens,et al.  Dynamics of dark energy with a coupling to dark matter , 2008, 0801.1565.

[22]  P. A. R. Ade,et al.  HIGH-RESOLUTION CMB POWER SPECTRUM FROM THE COMPLETE ACBAR DATA SET , 2008, 0801.1491.

[23]  D. Pavón,et al.  Le Châtelier–Braun principle in cosmological physics , 2007, 0712.0565.

[24]  Bin Wang,et al.  Thermodynamical description of the interaction between holographic dark energy and dark matter , 2007, 0711.2214.

[25]  D. Pavón,et al.  Thermodynamical description of the interaction between dark energy and dark matter , 2007 .

[26]  D. Polarski,et al.  On the growth of linear perturbations , 2007, 0710.1510.

[27]  L. Sodré,et al.  Signature of the interaction between dark energy and dark matter in galaxy clusters , 2007, 0710.1198.

[28]  B. Jain,et al.  Observational Tests of Modified Gravity , 2007, 0709.2375.

[29]  M. Trodden,et al.  The adiabatic instability on cosmology's dark side , 2007, 0709.1124.

[30]  Mark Trodden,et al.  Adiabatic instability in coupled dark energy/dark matter models , 2007, 0709.1128.

[31]  Bin Wang,et al.  Transition of equation of state of effective dark energy in the Dvali-Gabadadze-Porrati model with bulk contents , 2007, 0708.0992.

[32]  R. Nichol,et al.  Measuring the Baryon Acoustic Oscillation scale using the SDSS and 2dFGRS , 2007, 0705.3323.

[33]  O. Bertolami,et al.  The Abell Cluster A586 and the Equivalence Principle , 2007 .

[34]  Ole Eggers Bjælde,et al.  Neutrino dark energy—revisiting the stability issue , 2007, 0705.2018.

[35]  S. Tsujikawa Matter density perturbations and effective gravitational constant in modified gravity models of dark energy , 2007, 0705.1032.

[36]  N. Riazi,et al.  String inspired explanation for the superacceleration of our Universe , 2007, 0704.0666.

[37]  O. Bertolami,et al.  Dark energy–dark matter interaction and putative violation of the equivalence principle from the Abell cluster A586 , 2007, astro-ph/0703462.

[38]  Alexander S. Szalay,et al.  The Shape of the Sloan Digital Sky Survey Data Release 5 Galaxy Power Spectrum , 2007 .

[39]  N. Ohta,et al.  Probing the coupling between dark components of the universe , 2007, astro-ph/0702015.

[40]  C. Tao,et al.  Probing for dynamics of dark energy and curvature of universe with latest cosmological observations , 2006, astro-ph/0612728.

[41]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[42]  J. Bond,et al.  Improved Measurements of the CMB Power Spectrum with ACBAR , 2006, astro-ph/0611198.

[43]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[44]  F. Atrio-Barandela,et al.  Matter density perturbations in interacting quintessence models , 2006, astro-ph/0607604.

[45]  J. Zang,et al.  Interacting Dark Energy and Dark Matter: Observational Constraints from Cosmological Parameters , 2006, astro-ph/0607126.

[46]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[47]  M. Kaplinghat,et al.  Stable models of superacceleration , 2006, astro-ph/0601517.

[48]  J. Khoury,et al.  Superacceleration as the signature of a dark sector interaction , 2005, astro-ph/0510628.

[49]  J. Neill,et al.  The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda,and w from the First Year Data Set , 2005, astro-ph/0510447.

[50]  P. Ferreira,et al.  Implications of the Cosmic Background Imager Polarization Data , 2005, astro-ph/0509203.

[51]  M. Zaldarriaga,et al.  Instability of dark energy with mass-varying neutrinos , 2005, astro-ph/0506663.

[52]  L. Amendola,et al.  Phantom damping of matter perturbations , 2005, astro-ph/0506222.

[53]  W. Zimdahl INTERACTING DARK ENERGY AND COSMOLOGICAL EQUATIONS OF STATE , 2005, gr-qc/0505056.

[54]  D. Pavón,et al.  Holographic dark energy and cosmic coincidence , 2005, gr-qc/0505020.

[55]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[56]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[57]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[58]  S. Carroll,et al.  Is Cosmic Speed-Up Due to New Gravitational Physics? , 2003, astro-ph/0306438.

[59]  Peter Garnavich,et al.  Cosmological Results from High-z Supernovae , 2003, astro-ph/0305008.

[60]  L. Amendola,et al.  Tracking and coupled dark energy as seen by the Wilkinson Microwave Anisotropy Probe , 2003 .

[61]  D. Pavón,et al.  Interacting quintessence solution to the coincidence problem , 2003, astro-ph/0303145.

[62]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: ANGULAR POWER SPECTRA , 2008, The Astrophysical Journal Supplement Series.

[63]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[64]  W. Zimdahl,et al.  Interacting Quintessence , 2001, astro-ph/0105479.

[65]  L. Amendola,et al.  Stationary dark energy: The Present universe as a global attractor , 2000, astro-ph/0011243.

[66]  M. Porrati,et al.  4D Gravity on a Brane in 5D Minkowski Space , 2000, hep-th/0005016.

[67]  L. Amendola Coupled Quintessence , 1999, astro-ph/9908023.

[68]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[69]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[70]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[71]  R. Ellis,et al.  Discovery of a supernova explosion at half the age of the Universe , 1997, Nature.

[72]  S. Carroll,et al.  DARK MATTER WITH TIME-DEPENDENT MASS , 1997, COSMO-97.

[73]  H. Kodama,et al.  Cosmological Perturbation Theory , 1984 .