The experimental study of population-based parameter optimization algorithms on rule-based ecological modelling

This study investigates six population-based algorithms for the parameter optimization (PO) within the hybrid methodology developed for modelling algal abundance by rule-based models. These PO algorithms include: (1) Hill Climbing (2) Simulated Annealing (3) Genetic Algorithm (4) Differential Evolution (5) Covariance Matrix Adaptation Evolution Strategy and (6) Estimation of Distribution Algorithm. The effectiveness of algorithms is tested on the Cylindrospermopsis abundance data from Wivenhoe Reservoir in Queensland (Australia). We provide a systematic analysis and comparison of different parameter optimization algorithms as well as the resulting predictive rule models.

[1]  M. Pelikán,et al.  The Bivariate Marginal Distribution Algorithm , 1999 .

[2]  J. Benndorf,et al.  Problems of application of the ecological model salmo to lakes and reservoirs having various trophic states , 1982 .

[3]  Holger R. Maier,et al.  Forecasting cyanobacterium Anabaena spp. in the River Murray, South Australia, using B-spline neurofuzzy models , 2001 .

[4]  S. Shumway A Review of the Effects of Algal Blooms on Shellfish and Aquaculture , 1989 .

[5]  Lishan Kang,et al.  A new approach to the estimation of electrocrystallization parameters , 1999 .

[6]  Hongqing Cao,et al.  A new tree structure code for equivalent circuit and evolutionary estimation of parameters , 2007 .

[7]  Pedro Larrañaga,et al.  Estimation of Distribution Algorithms , 2002, Genetic Algorithms and Evolutionary Computation.

[8]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[9]  P. Bosman,et al.  Adapted Maximum-Likelihood Gaussian Models for Numerical Optimization with Continuous EDAs , 2007 .

[10]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[11]  Gustaaf M. Hallegraeff,et al.  Harmful algal blooms in the Australian region , 1992 .

[12]  Daniele Loiacono,et al.  Prediction update algorithms for XCSF: RLS, Kalman filter, and gain adaptation , 2006, GECCO '06.

[13]  Michele Scardi,et al.  Advances in neural network modeling of phytoplankton primary production , 2001 .

[14]  J. Vallino Improving marine ecosystem models: Use of data assimilation and mesocosm experiments , 2000 .

[15]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[16]  Dirk Thierens,et al.  Expanding from Discrete to Continuous Estimation of Distribution Algorithms: The IDEA , 2000, PPSN.

[17]  Friedrich Recknagel,et al.  Elucidation and short-term forecasting of microcystin concentrations in Lake Suwa (Japan) by means of artificial neural networks and evolutionary algorithms. , 2007, Water research.

[18]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[19]  Simon J. Pittman,et al.  Short-term consequences of a benthic cyanobacterial bloom ( Lyngbya majuscula Gomont) for fish and penaeid prawns in Moreton Bay (Queensland, Australia) , 2005 .

[20]  Qiuwen Chen,et al.  Integration of data mining techniques and heuristic knowledge in fuzzy logic modelling of eutrophication in Taihu Lake , 2003 .

[21]  Friedrich Recknagel,et al.  Hybrid Evolutionary Algorithm for Rule Set Discovery in Time-Series Data to Forecast and Explain Algal Population Dynamics in Two Lakes Different in Morphometry and Eutrophication , 2006 .

[22]  Thomas Bäck,et al.  Evolutionary computation: comments on the history and current state , 1997, IEEE Trans. Evol. Comput..

[23]  Barry T. Hart,et al.  Algal blooms in the Darling-Barwon River, Australia , 1997 .

[24]  Friedrich Recknagel,et al.  Rule-based agents for forecasting algal population dynamics in freshwater lakes discovered by hybrid evolutionary algorithms , 2008, Ecol. Informatics.

[25]  R. Storn,et al.  On the usage of differential evolution for function optimization , 1996, Proceedings of North American Fuzzy Information Processing.

[26]  George C. Hurtt,et al.  A pelagic ecosystem model calibrated with BATS and OWSI data , 1999 .

[27]  Pei Hongping,et al.  Study on the algal dynamic model for West Lake, Hangzhou , 2002 .

[28]  Richard A. Park,et al.  A generalized model for simulating lake ecosystems , 1974 .

[29]  Pedro Larrañaga,et al.  Optimization in Continuous Domains by Learning and Simulation of Gaussian Networks , 2000 .

[30]  Richard J. Matear,et al.  Parameter optimization and analysis of ecosystem models using simulated annealing: a case study at Station P , 1995 .

[31]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[32]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[33]  T. Maekawa,et al.  Use of artificial neural network in the prediction of algal blooms. , 2001, Water research.

[34]  Anna Kucerová,et al.  Improvements of real coded genetic algorithms based on differential operators preventing premature convergence , 2004, ArXiv.

[35]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[36]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.