Distribution of trace elements in willemite from the Belgium non-sulphide deposits

Samples of willemite (Zn2SiO4) mineralization from the historical non-sulphide Zn–Pb deposits of La Calamine (eastern Belgium) have been recovered from collections of the Geological Survey of Belgium. Textural and chemical analyses are used to evaluate the critical element distribution (Ge, In, Ga) and deportment. willemite occurs as a variety of types that continuously formed between the protore stage (sulphides) and the late supergene stage (carbonates and hydrated phases). Different types of willemite may be distinguished on the basis of their shape and zoning characteristics, supporting a polyphase non-sulphide mineralization after the protore stage. This is also marked by a significant change of major-element compositions in the late generation of willemite. Laserablation inductively coupled plasma mass-spectrometry (LA-ICP-MS) measurements of minor and trace elements also reveal a strong variability between the different willemite types, although no straightforward relation with the shape of willemite crystals or their zoning is demonstrated. Among the trace elements, we note anomalous high contents of P, Cd, As, Pb, Ag and Sb, the three latter ones being related to tiny galena inclusions. While Ga and In contents are very low (less than 4 ppm) or below detection limits, respectively, significant Ge contents up to 250 ppm were measured. Such contents are consistent with values reported from willemite mineralization throughout the world. The concentrations measured in willemite are similar to those in sphalerite (averaging 250 ppm), supporting a role as precursor for sphalerite. However, the supergene origin of willemite in Belgian deposits is controversial and the influence of low-temperature hydrothermal fluids for willemite precipitation cannot be ruled out. This also questions the origin of Ge further incorporated in zinc silicates.

[1]  Mateusz Ciszewski,et al.  Germanium and Indium Recovery from Zinc Metallurgy by-Products—Dross Leaching in Sulphuric and Oxalic Acids , 2018, Metals.

[2]  A. Boyce,et al.  Critical elements in non-sulfide Zn deposits: a reanalysis of the Kabwe Zn-Pb ores (central Zambia) , 2018, Mineralogical Magazine.

[3]  M. Boni,et al.  Germanium enrichment in supergene settings: evidence from the Cristal nonsulfide Zn prospect, Bongará district, northern Peru , 2018, Mineralium Deposita.

[4]  O. Saddiqi,et al.  Mineralogical and geochemical characterization of supergene Cu–Pb–Zn–V ores in the Oriental High Atlas, Morocco , 2017, Mineralium Deposita.

[5]  T. Vennemann,et al.  Characterization and origin of low-T willemite (Zn2SiO4) mineralization: the case of the Bou Arhous deposit (High Atlas, Morocco) , 2017, Mineralium Deposita.

[6]  M. Frenzel,et al.  Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type — A meta-analysis , 2016 .

[7]  Rémi Belissont Germanium and related elements in sulphide minerals : crystal chemistry, incorporation and isotope fractionation , 2016 .

[8]  O. Mathon,et al.  Distribution and oxidation state of Ge, Cu and Fe in sphalerite by μ-XRF and K-edge μ-XANES: insights into Ge incorporation, partitioning and isotopic fractionation , 2016 .

[9]  F. Melcher,et al.  Chemical Environment of Unusually Ge- and Pb-Rich Willemite, Tres Marias Mine, Mexico , 2016 .

[10]  R. Guégan,et al.  Zinc-rich clays in supergene non-sulfide zinc deposits , 2016, Mineralium Deposita.

[11]  M. Reich,et al.  Geological and economic significance of supergene metal deposits , 2015 .

[12]  E. Pirard,et al.  Critical metals in sphalerites from Belgian MVT deposits , 2015 .

[13]  M. Boni,et al.  The “Calamines” and the “Others”: The great family of supergene nonsulfide zinc ores , 2015 .

[14]  J. Nieto,et al.  Supergene enrichment of precious metals by natural amalgamation in the Las Cruces weathering profile (Iberian Pyrite Belt, SW Spain) , 2014 .

[15]  M. Cathelineau,et al.  LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac - Saint-Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes , 2014 .

[16]  G. Olivo,et al.  Geology, mineralogy, and geochemistry of the Vazante Northern Extension zinc silicate deposit, Minas Gerais, Brazil , 2014 .

[17]  Yan Chen,et al.  Non-sulfide zinc deposits of the Moroccan High Atlas: Multi-scale characterization and origin , 2014 .

[18]  I. Bélanger,et al.  Redéfinition des unités structurales du front varisque utilisées dans le cadre de la nouvelle Carte géologique de wallonie (Belgique) , 2012 .

[19]  J. Hellstrom,et al.  Iolite: Freeware for the visualisation and processing of mass spectrometric data , 2011 .

[20]  L. Yuping,et al.  Trace and minor elements in sphalerite from base metal deposits in South China: A LA-ICPMS study , 2011 .

[21]  R. Terracciano,et al.  The carbonate-hosted willemite prospects of the Zambezi Metamorphic Belt (Zambia) , 2011 .

[22]  Bernhardt Saini-Eidukat,et al.  Trace and minor elements in sphalerite: A LA-ICPMS study , 2009 .

[23]  M. Sintubin,et al.  Early Palaeozoic orogenic events north of the Rheic suture (Brabant, Ardenne): A review , 2009 .

[24]  A. Putnis Mineral Replacement Reactions , 2009 .

[25]  F. Melcher,et al.  Zinc–germanium ores of the Tres Marias Mine, Chihuahua, Mexico , 2009 .

[26]  R. Terracciano Willemite Mineralisation in Namibia and Zambia , 2008 .

[27]  H. Gilg,et al.  The “calamine” nonsulfide Zn–Pb deposits of Belgium: Petrographical, mineralogical and geochemical characterization , 2008 .

[28]  L. Monteiro,et al.  Nonsulfide and sulfide-rich zinc mineralizations in the Vazante, Ambrósia and Fagundes deposits, Minas Gerais, Brazil: Mass balance and stable isotope characteristics of the hydrothermal alterations , 2007 .

[29]  G. Friedrich,et al.  Geology, mineralogy and stable isotope geochemistry of the Kabwe carbonate-hosted Pb–Zn deposit, Central Zambia , 2007 .

[30]  R. Höll,et al.  Metallogenesis of germanium—A review , 2007 .

[31]  R. Wyns,et al.  Continental France and Belgium during the early Cretaceous: paleoweatherings and paleolandforms , 2006 .

[32]  P. Muchez,et al.  7: Extensional tectonics and the timing and formation of basin-hosted deposits in Europe , 2005 .

[33]  A. Williams-Jones,et al.  CRYSTALLOGRAPHIC CONTROLS ON TRACE-ELEMENT INCORPORATION IN AURIFEROUS PYRITE FROM THE PASCUA EPITHERMAL HIGH-SULFIDATION DEPOSIT, CHILE–ARGENTINA , 2005 .

[34]  M. Boni,et al.  Willemite in the Belgian non-sulfide zinc deposit: a fluid inclusion study , 2005 .

[35]  M. Boni,et al.  THE "CALAMINE-TYPE ZINC-LEAD DEPOSITS IN BELGIUM AND WEST GERMANY: A PRODUCT OF MESOZOIC PALAEOWEATHERING PROCESSES , 2005 .

[36]  M. Hitzman,et al.  Classification, Genesis, and Exploration Guides for Nonsulfide Zinc Deposits , 2003 .

[37]  W. Dunlap,et al.  Geology of the Beltana Willemite Deposit, Flinders Ranges, South Australia , 2003 .

[38]  H. Gilg,et al.  The "Calamine" of Southwest Sardinia: Geology, Mineralogy, and Stable Isotope Geochemistry of Supergene Zn Mineralization , 2003 .

[39]  J. Brugger,et al.  Formation of Willemite in Hydrothermal Environments , 2003 .

[40]  F. Melcher THE OTAVI MOUNTAIN LAND IN NAMIBIA: TSUMEB, GERMANIUM AND SNOWBALL EARTH , 2003 .

[41]  W. Ridley,et al.  Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique , 2002 .

[42]  P. Muchez,et al.  Origin and evolution of high-salinity, Zn–Pb mineralising fluids in the Variscides of Belgium , 2001 .

[43]  M. Schwartz Cadmium in Zinc Deposits: Economic Geology of a Polluting Element , 2000 .

[44]  W. Fielitz,et al.  Pre- and synorogenic burial metamorphism in the Ardenne and neighbouring areas (Rhenohercynian zone, central European Variscides) , 1999 .

[45]  O. Oncken,et al.  Accretion of a rifted passive margin: The Late Paleozoic Rhenohercynian fold and thrust belt (Middle European Variscides) , 1999 .

[46]  L. Dejonghe Zinc-lead deposits of Belgium , 1998 .

[47]  J. Schott,et al.  Thermodynamic properties of aqueous Ge(IV) hydroxide complexes from 25 to 350°C: Implications for the behavior of germanium and the Ge/Si ratio in hydrothermal fluids , 1998 .

[48]  S. Jackson,et al.  A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials , 1997 .

[49]  D. Günther,et al.  Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation , 1996 .

[50]  P. Muchez,et al.  Mississippi Valley-type Pb-Zn mineralization in eastern Belgium: Indications for gravity-driven flow , 1994 .

[51]  C. Vercoutère,et al.  Post-Palaeozoic cooling and uplift of the Brabant Massif as revealed by apatite fission track analysis , 1993, Geological Magazine.

[52]  L. Dejonghe,et al.  Atlas des gisements plombo-zincifères du Synclinorium de Verviers (Est de la Belgique) , 1993 .

[53]  D. Sangster Mississippi Valley-type and sedex lead-zinc deposits : a comparative examination , 1990 .

[54]  F. Meilliez,et al.  Deformation pelliculaire differenciee dans une serie lithologique heterogene; le Devono-Carbonifere de l'Ardenne , 1990 .

[55]  J. Misiewicz The geology and metallogeny of the Otavi mountain land, Damara Orogen, SWA/Namibia, with particular reference to the Berg Aukas Zn-Pb-V deposit , 1988 .

[56]  L. Bernstein Geology and Mineralogy of the Apex Germanium-Gallium Mine, Washington County, Utah , 1986 .

[57]  L. Bernstein Germanium geochemistry and mineralogy , 1985 .

[58]  L. Dejonghe,et al.  La définition du synclinorium de Verviers , 1984 .

[59]  C. Schoumacher,et al.  Thallium, nickel, cobalt and other trace elements in iron sulfides from belgian lead-zinc vein deposits , 1983 .

[60]  L. Dejonghe,et al.  Les gisements plombo-zincifères de l'Est de la Belgique , 1983 .

[61]  H. Sheffer The occurrence of germanium in willemite , 1966 .