Low-order scaling local electron correlation methods. V. Connected triples beyond (T): Linear scaling local CCSDT-1b

A new O(N ) method for the iterative treatment of connected triple substitutions in the framework of local coupled cluster theory is introduced here, which is the local equivalent of the canonical CCSDT-1b method. The effect of the triple substitutions is treated in a self-consistent manner in each coupled cluster iteration. As for the local (T) method presented earlier in this series the computational cost of the method scales asymptotically linear with molecular size. The additional computational burden due to the involvement of triples in each coupled cluster iteration hence is not nearly as dramatic as for the parental canonical method, where it implies an increase in the computational complexity of the coupled cluster iteration from O(N6) to O(N7). The method has certain advantages in comparison to the perturbative a posteriori treatment of connected triples (T) for cases where static correlation effects start to play a role. It is demonstrated that molecules with about 100 atoms and 1000 basis funct...

[1]  D. Thouless Stability conditions and nuclear rotations in the Hartree-Fock theory , 1960 .

[2]  Hiroshi Nakatsuji,et al.  Structure of the exact wave function , 2000 .

[3]  P. Vasilopoulos,et al.  The local approach: Electronic correlations in small hydrocarbon molecules , 1986 .

[4]  Martin Head-Gordon,et al.  Non-iterative local second order Møller–Plesset theory , 1998 .

[5]  Stollhoff,et al.  Correlated ground state of diamond reexamined. , 1988, Physical review. B, Condensed matter.

[6]  D. Feichtinger,et al.  CHEMISTRY OF THE 2,5-DIDEHYDROPYRIDINE BIRADICAL : COMPUTATIONAL, KINETIC,AND TRAPPING STUDIES TOWARD DRUG DESIGN , 1998 .

[7]  G. Stollhoff,et al.  Electronic correlations in polyethylene , 1989 .

[8]  Martin Schütz,et al.  Low-order scaling local electron correlation methods. III. Linear scaling local perturbative triples correction (T) , 2000 .

[9]  Rodney J. Bartlett,et al.  The equation-of-motion coupled-cluster method: Excitation energies of Be and CO , 1989 .

[10]  Peter Fulde,et al.  On the computation of electronic correlation energies within the local approach , 1980 .

[11]  R. Ahlrichs,et al.  STABILITY ANALYSIS FOR SOLUTIONS OF THE CLOSED SHELL KOHN-SHAM EQUATION , 1996 .

[12]  F. Bartha,et al.  Application of the many-body perturbation theory to normal saturated hydrocarbons in the localized representation , 1987 .

[13]  J. Stanton Why CCSD(T) works: a different perspective , 1997 .

[14]  R. Bartlett,et al.  Can simple localized bond orbitals and coupled cluster methods predict reliable molecular energies , 1985 .

[15]  Martin Head-Gordon,et al.  A tensor formulation of many-electron theory in a nonorthogonal single-particle basis , 1998 .

[16]  P. Otto,et al.  Intermolecular and intramolecular interactions calculated with ab initio perturbative configuration interaction method using strongly localized orbitals , 1982 .

[17]  Peter J. Knowles,et al.  Restricted Møller—Plesset theory for open-shell molecules , 1991 .

[18]  R. Bartlett,et al.  A study of Be2 with many‐body perturbation theory and a coupled‐cluster method including triple excitations , 1984 .

[19]  Werner Kutzelnigg,et al.  Direct Calculation of Approximate Natural Orbitals and Natural Expansion Coefficients of Atomic and Molecular Electronic Wavefunctions. II. Decoupling of the Pair Equations and Calculation of the Pair Correlation Energies for the Be and LiH Ground States , 1968 .

[20]  Peter Pulay,et al.  Local configuration interaction: An efficient approach for larger molecules , 1985 .

[21]  Peter Pulay,et al.  The local correlation treatment. II. Implementation and tests , 1988 .

[22]  Peter Pulay,et al.  Fourth‐order Mo/ller–Plessett perturbation theory in the local correlation treatment. I. Method , 1987 .

[23]  Hans-Joachim Werner,et al.  Third-order multireference perturbation theory The CASPT3 method , 1996 .

[24]  Local and long-range correlation in extended systems , 1986 .

[25]  Stollhoff,et al.  Why polyacetylene dimerizes: Results of ab initio computations. , 1990, Physical review letters.

[26]  R. Bartlett,et al.  Toward the limits of predictive electronic structure theory: Connected quadruple excitations for large basis set calculations , 2001 .

[27]  Michael C. Zerner,et al.  The linked singles and doubles model: An approximate theory of electron correlation based on the coupled‐cluster ansatz , 1982 .

[28]  Peter Pulay,et al.  An efficient reformulation of the closed‐shell self‐consistent electron pair theory , 1984 .

[29]  Yixiang Cao,et al.  Correlated ab Initio Electronic Structure Calculations for Large Molecules , 1999 .

[30]  Josef Paldus,et al.  Coupled-cluster approach to electron correlation in one dimension. II. Cyclic polyene model in localized basis , 1984 .

[31]  J. P. Malrieu,et al.  Commentationes Localized Bond Orbitals and the Correlation Problem I. The Perturbation Calculation of the Ground State Energy , 1969 .

[32]  G. C. Wick The Evaluation of the Collision Matrix , 1950 .

[33]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[34]  Guntram Rauhut,et al.  Integral transformation with low‐order scaling for large local second‐order Møller–Plesset calculations , 1998 .

[35]  Trygve Helgaker,et al.  The CC3 model: An iterative coupled cluster approach including connected triples , 1997 .

[36]  Georg Hetzer,et al.  Low-order scaling local electron correlation methods. I. Linear scaling local MP2 , 1999 .

[37]  Philippe Y. Ayala,et al.  Linear scaling coupled cluster and perturbation theories in the atomic orbital basis , 1999 .

[38]  Martin Head-Gordon,et al.  A second-order perturbative correction to the coupled-cluster singles and doubles method: CCSD(2) , 2001 .

[39]  R. Bartlett,et al.  A coupled cluster approach with triple excitations , 1984 .

[40]  Axel D. Becke,et al.  Density‐functional thermochemistry. IV. A new dynamical correlation functional and implications for exact‐exchange mixing , 1996 .

[41]  Hideo Sekino,et al.  A linear response, coupled‐cluster theory for excitation energy , 1984 .

[42]  R. Bartlett,et al.  The full CCSDT model for molecular electronic structure , 1987 .

[43]  Rodney J. Bartlett,et al.  Equation of motion coupled cluster method for electron attachment , 1995 .

[44]  F. Bartha,et al.  Applications of the many-body perturbation theory in the localized representation: structural effects in the correlation energy of normal saturated hyd , 1991 .

[45]  John F. Stanton,et al.  The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties , 1993 .

[46]  B. Kirtman,et al.  Density matrix treatment of localized electronic interactions in molecules and solids , 1981 .

[47]  M. Head‐Gordon,et al.  An accurate local model for triple substitutions in fourth order Møller–Plesset theory and in perturbative corrections to singles and doubles coupled cluster methods , 2000 .

[48]  C. Kozmutza,et al.  Calculation of the dispersion interaction energy by using localized molecular orbitals , 1991 .

[49]  Philippe Y. Ayala,et al.  Linear scaling second-order Moller–Plesset theory in the atomic orbital basis for large molecular systems , 1999 .

[50]  B Engels,et al.  The importance of the ene reaction for the C(2)-C(6) cyclization of enyne-allenes. , 2001, Journal of the American Chemical Society.

[51]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[52]  Hermann Stoll,et al.  Electron correlations in the ground state of diamond , 1982 .

[53]  P. Knowles,et al.  An efficient internally contracted multiconfiguration–reference configuration interaction method , 1988 .

[54]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[55]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[56]  B. Kirtman Molecular electronic structure by combination of fragments , 1982 .

[57]  B. Kirtman,et al.  Local space approximation for configuration interaction and coupled cluster wave functions , 1986 .

[58]  Martin Head-Gordon,et al.  Closely approximating second-order Mo/ller–Plesset perturbation theory with a local triatomics in molecules model , 2000 .

[59]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[60]  P. Knowles,et al.  An efficient method for the evaluation of coupling coefficients in configuration interaction calculations , 1988 .

[61]  F. Bartha,et al.  The study of normal saturated hydrocarbons in the localized representation of the MBPT , 1988 .

[62]  C. Kozmutza,et al.  Localized orbitals for the description of molecular interaction , 1990 .

[63]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[64]  T. Martínez,et al.  LOCAL WEAK PAIRS SPECTRAL AND PSEUDOSPECTRAL SINGLES AND DOUBLES CONFIGURATION INTERACTION , 1996 .

[65]  Josef Paldus,et al.  Time-Independent Diagrammatic Approach to Perturbation Theory of Fermion Systems , 1975 .

[66]  Rodney J. Bartlett,et al.  SCF and localized orbitals in ethylene: MBPT/CC results and comparison with one-million configuration Cl☆ , 1983 .

[67]  J. Paldus,et al.  Bond length alternation in cyclic polyenes. VI. Coupled cluster approach with wannier orbital basis , 1985 .

[68]  Peter Pulay,et al.  Localizability of dynamic electron correlation , 1983 .

[69]  Hans-Joachim Werner,et al.  Local treatment of electron correlation in coupled cluster theory , 1996 .

[70]  Peter Pulay,et al.  Orbital-invariant formulation and second-order gradient evaluation in Møller-Plesset perturbation theory , 1986 .

[71]  Ove Christiansen,et al.  Response functions in the CC3 iterative triple excitation model , 1995 .

[72]  Guntram Rauhut,et al.  Analytical energy gradients for local second-order Mo/ller–Plesset perturbation theory , 1998 .

[73]  C. Kozmutza,et al.  Application of the many‐body perturbation theory by using localized orbitals , 1983 .

[74]  Georg Hetzer,et al.  Multipole approximation of distant pair energies in local MP2 calculations , 1998 .

[75]  John F. Stanton,et al.  The ACES II program system , 1992 .

[76]  F. Bartha,et al.  Applications of the MBPT in the localized representation , 1990 .

[77]  R. Bartlett,et al.  Erratum: A coupled cluster approach with triple excitations [J. Chem. Phys. 81, 5906 (1984)] , 1985 .

[78]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[79]  W. Kutzelnigg,et al.  Ab initio calculations on small hydrides including electron correlation , 1968 .

[80]  Janos Ladik,et al.  Coupled-cluster studies. II. The role of localization in correlation calculations on extended systems , 1985 .

[81]  Peter Pulay,et al.  Comparison of the boys and Pipek–Mezey localizations in the local correlation approach and automatic virtual basis selection , 1993, J. Comput. Chem..

[82]  Hans-Joachim Werner,et al.  Local perturbative triples correction (T) with linear cost scaling , 2000 .

[83]  M. Zerner,et al.  A constant denominator perturbation theory for molecular energy , 1982 .

[84]  S. J. Cole,et al.  Towards a full CCSDT model for electron correlation , 1985 .

[85]  John A. Pople,et al.  Self‐consistent molecular orbital methods. XVIII. Constraints and stability in Hartree–Fock theory , 1977 .

[86]  P Pulay,et al.  Local Treatment of Electron Correlation , 1993 .

[87]  C. Kozmutza,et al.  Counterpoise corrected calculations at the correlated level: A simplified method using LMOs , 1991 .

[88]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[89]  Anna I. Krylov,et al.  Second order perturbation corrections to singles and doubles coupled-cluster methods: General theory and application to the valence optimized doubles model , 2000 .

[90]  Rodney J. Bartlett,et al.  Noniterative energy corrections through fifth-order to the coupled cluster singles and doubles method , 1998 .

[91]  Hans-Joachim Werner,et al.  Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD) , 2001 .

[92]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .