AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate

An original method to fabricate III-nitride photonic crystal membranes without etching of III-N materials is reported. A photonic crystal pattern is first realized in a silicon substrate. GaN quantum dots embedded in a thin AlN layer are then grown by conformal epitaxy using ammonia-based molecular beam epitaxy on the top of the patterned silicon substrate and a free-standing membrane is achieved by selective etching of the silicon substrate through the holes of the photonic crystal. Room temperature microphotoluminescence measurements show a quality factor as high as 1800 at 425 nm on a modified L3 cavity. Possibility to achieve lasing with this system is discussed.

[1]  A. Scherer,et al.  Low-Threshold Photonic Crystal Laser , 2002 .

[2]  Yoshinori Tanaka,et al.  GaN Photonic-Crystal Surface-Emitting Laser at Blue-Violet Wavelengths , 2008, Science.

[3]  J. Brault,et al.  Study of the growth mechanisms of GaN/(Al, Ga)N quantum dots: Correlation between structural and optical properties , 2011 .

[4]  Pierre M. Petroff,et al.  Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes , 2005, Science.

[5]  J. Massies,et al.  Radiative lifetime of a single electron-hole pair in GaN/AlN quantum dots , 2006 .

[6]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[7]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[8]  Fabrice Semond,et al.  Determination of the refractive indices of AlN, GaN, and AlxGa1−xN grown on (111)Si substrates , 2003 .

[9]  G. Duan,et al.  1.5μm room-temperature emission of square-lattice photonic-crystal waveguide lasers with a single line defect , 2005 .

[10]  T. Lu,et al.  Characteristics of GaN-based photonic crystal surface emitting lasers , 2008 .

[11]  C. Eddy,et al.  Fabrication of GaN suspended photonic crystal membranes and resonant nanocavities on Si(111) , 2007 .

[12]  Philippe Boucaud,et al.  Optimized design for 2 × 106 ultra-high Q silicon photonic crystal cavities , 2010 .

[13]  O. Kermarrec,et al.  Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source. , 2008, Optics express.

[14]  Tom Oder,et al.  III-nitride photonic crystals , 2003 .

[15]  D. Bouwmeester,et al.  Self-tuned quantum dot gain in photonic crystal lasers. , 2005, Physical review letters.

[16]  Yasuhiko Arakawa,et al.  AlN air-bridge photonic crystal nanocavities demonstrating high quality factor , 2007 .

[17]  T. Bretagnon,et al.  High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al(Ga)N quantum dots. , 2011, Optics letters.

[18]  Shuji Nakamura,et al.  GaN blue photonic crystal membrane nanocavities , 2005 .

[19]  Susumu Noda,et al.  Fine-tuned high-Q photonic-crystal nanocavity. , 2005, Optics express.

[20]  Jean-Michel Lourtioz,et al.  Photonic Crystals : Towards Nanoscale Photonic Devices , 2005 .

[21]  S. Chenot,et al.  GaN Quantum Dots Grown on Silicon for Free-Standing Membrane Photonic Structures , 2009 .

[22]  Axel Scherer,et al.  Optimization of the Q factor in photonic crystal microcavities , 2002 .