Polyether‐b‐Amide Based Solid Electrolytes with Well‐Adhered Interface and Fast Kinetics for Ultralow Temperature Solid‐State Lithium Metal Batteries

[1]  Jiaqi Huang,et al.  High-areal-capacity anode-free all-solid-state lithium batteries enabled by interconnected carbon-reinforced ionic-electronic composites , 2023, Journal of Materials Chemistry A.

[2]  Chen‐Zi Zhao,et al.  Eliminating interfacial O-involving degradation in Li-rich Mn-based cathodes for all-solid-state lithium batteries , 2022, Science advances.

[3]  Chen‐Zi Zhao,et al.  The void formation behaviors in working solid-state Li metal batteries , 2022, Science advances.

[4]  Yu‐Xing Yao,et al.  Ethylene‐Carbonate‐Free Electrolytes for Rechargeable Li‐Ion Pouch Cells at Sub‐Freezing Temperatures , 2022, Advanced materials.

[5]  Chen‐Zi Zhao,et al.  The timescale identification decoupling complicated kinetic processes in lithium batteries , 2022, Joule.

[6]  A. Manthiram,et al.  Foldable Solid‐State Batteries Enabled by Electrolyte Mediation in Covalent Organic Frameworks , 2022, Advanced materials.

[7]  Chen‐Zi Zhao,et al.  Dry electrode technology, the rising star in solid-state battery industrialization , 2022, Matter.

[8]  L. Nazar,et al.  High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes , 2022, Nature Energy.

[9]  D. Mecerreyes,et al.  Single‐Ion Lithium Conducting Polymers with High Ionic Conductivity Based on Borate Pendant Groups , 2021, Angewandte Chemie.

[10]  Xiulin Fan,et al.  Critical Review on Low‐Temperature Li‐Ion/Metal Batteries , 2021, Advanced materials.

[11]  Jiarui Li,et al.  Designing Weakly Solvating Solid Main-Chain Fluoropolymer Electrolytes: Synergistically Enhancing Stability toward Li Anodes and High-Voltage Cathodes , 2021, ACS Energy Letters.

[12]  Taeeun Yim,et al.  Single‐Ion Conducting Soft Electrolytes for Semi‐Solid Lithium Metal Batteries Enabling Cell Fabrication and Operation under Ambient Conditions , 2021, Advanced Energy Materials.

[13]  T. Zhao,et al.  A High‐Capacity, Long‐Cycling All‐Solid‐State Lithium Battery Enabled by Integrated Cathode/Ultrathin Solid Electrolyte , 2021, Advanced Energy Materials.

[14]  Boyang Liu,et al.  Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells , 2021, Nature Materials.

[15]  Jinping Liu,et al.  Designing Polymer-in-Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solid-State Lithium Batteries. , 2021, Angewandte Chemie.

[16]  Erik A. Wu,et al.  Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes , 2021, Science.

[17]  Y. Chiang,et al.  Publisher Correction: Semi-solid alkali metal electrodes enabling high critical current densities in solid electrolyte batteries , 2021, Nature Energy.

[18]  B. Ding,et al.  Solid‐State Lithium Metal Batteries with Extended Cycling Enabled by Dynamic Adaptive Solid‐State Interfaces , 2021, Advanced materials.

[19]  J. Goodenough,et al.  Formation of Stable Interphase of Polymer-in-Salt Electrolyte in All-Solid-State Lithium Batteries , 2020, Energy Material Advances.

[20]  James P. Horwath,et al.  In Situ Investigation of Chemomechanical Effects in Thiophosphate Solid Electrolytes , 2020 .

[21]  Hui‐Ming Cheng,et al.  Homogeneous and Fast Ion Conduction of PEO‐Based Solid‐State Electrolyte at Low Temperature , 2020, Advanced Functional Materials.

[22]  Henghui Zhou,et al.  Thiol‐Branched Solid Polymer Electrolyte Featuring High Strength, Toughness, and Lithium Ionic Conductivity for Lithium‐Metal Batteries , 2020, Advanced materials.

[23]  Felix H. Richter,et al.  Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries. , 2020, Chemical reviews.

[24]  G. Cui,et al.  Ionic‐Association‐Assisted Viscoelastic Nylon Electrolytes Enable Synchronously Coupled Interface for Solid Batteries , 2020, Advanced Functional Materials.

[25]  Donald J. Siegel,et al.  Low-temperature paddlewheel effect in glassy solid electrolytes , 2020, Nature Communications.

[26]  Qian Sun,et al.  Ultrastable Anode Interface Achieved by Fluorinating Electrolytes for All-Solid-State Li Metal Batteries , 2020 .

[27]  Yang Shen,et al.  Solvent‐Free Synthesis of Thin, Flexible, Nonflammable Garnet‐Based Composite Solid Electrolyte for All‐Solid‐State Lithium Batteries , 2020, Advanced Energy Materials.

[28]  V. Berbenni,et al.  Is It Possible to Obtain Solvent‐Free, Li+‐Conducting Solid Electrolytes Based on Pure PVdF? Comment on “Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes” , 2020, Advanced materials.

[29]  L. Archer,et al.  Designing solid-state electrolytes for safe, energy-dense batteries , 2020, Nature Reviews Materials.

[30]  Liquan Chen,et al.  Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. , 2019, Chemical reviews.

[31]  Yuanwen Jiang,et al.  Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors , 2019, Nature Communications.

[32]  Xiaokun Zhang,et al.  Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries , 2019, Nature Nanotechnology.

[33]  Qing Zhao,et al.  Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries , 2019, Nature Energy.

[34]  Yang Shen,et al.  Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes , 2019, Advanced materials.

[35]  Yutao Li,et al.  Double‐Layer Polymer Electrolyte for High‐Voltage All‐Solid‐State Rechargeable Batteries , 2018, Advanced materials.

[36]  M. Xiao,et al.  Effective Suppression of Lithium Dendrite Growth Using a Flexible Single-Ion Conducting Polymer Electrolyte. , 2018, Small.

[37]  Jonas Mindemark,et al.  Beyond PEO—Alternative host materials for Li + -conducting solid polymer electrolytes , 2018, Progress in Polymer Science.

[38]  Hongwei Chen,et al.  Cationic Covalent Organic Framework Nanosheets for Fast Li-Ion Conduction. , 2018, Journal of the American Chemical Society.

[39]  Yutao Li,et al.  PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic” , 2017 .

[40]  Federico Bella,et al.  Single-Ion Conducting Polymer Electrolytes for Lithium Metal Polymer Batteries that Operate at Ambient Temperature , 2016 .

[41]  Ming Liu,et al.  In Situ Synthesis of a Hierarchical All‐Solid‐State Electrolyte Based on Nitrile Materials for High‐Performance Lithium‐Ion Batteries , 2015 .

[42]  Lynden A. Archer,et al.  Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. , 2014, Journal of the American Chemical Society.

[43]  Rachid Meziane,et al.  Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. , 2013, Nature materials.