Nucleation Phenomena in Boiling on Nanoscopically Smooth Surfaces

[1]  D. Kenning Wall temperature patterns in nucleate boiling , 1991 .

[2]  A. R. Balakrishnan,et al.  Nucleation site density in pool boiling of saturated pure liquids: Effect of surface microroughness and surface and liquid physical properties , 1997 .

[3]  P. Attard Long-range attraction between hydrophobic surfaces , 1989 .

[4]  S. Bernasek,et al.  Oxidation of a polycrystalline titanium surface by oxygen and water , 2000 .

[5]  Masanobu Sakamoto,et al.  Attraction between hydrophobic surfaces with and without gas phase , 2000 .

[6]  B. Ninham,et al.  Submicrocavity Structure of Water between Hydrophobic and Hydrophilic Walls as Revealed by Optical Cavitation , 1995 .

[7]  M. Passeggi,et al.  Chemical reactions at surfaces: titanium oxidation , 1999 .

[8]  V. Dhir,et al.  On the Gas Entrapment and Nucleation Site Density During Pool Boiling of Saturated Water , 1992 .

[9]  K. Yasuoka,et al.  Molecular dynamics simulation of supersaturated vapor nucleation in slit pore. II. Thermostatted atomic-wall model , 2001 .

[10]  H. J van Ouwerkerk,et al.  Burnout in pool boiling the stability of boiling mechanisms , 1972 .

[11]  D. Kenning,et al.  Pool boiling heat transfer on a thin plate: features revealed by liquid crystal thermography , 1996 .

[12]  E. Nannei,et al.  On the effect of heating wall thickness on pool boiling burnout , 1976 .

[13]  Phil Attard,et al.  Atomic Force Microscope Images of Nanobubbles on a Hydrophobic Surface and Corresponding Force-Separation Data , 2002 .

[14]  Phil Attard,et al.  BUBBLES, CAVITIES, AND THE LONG-RANGED ATTRACTION BETWEEN HYDROPHOBIC SURFACES , 1994 .

[15]  J. Israelachvili,et al.  The hydrophobic interaction is long range, decaying exponentially with distance , 1982, Nature.

[16]  I. Mezić,et al.  Instability of Ultra-Thin Water Films and the Mechanism of Droplet Formation on Hydrophilic Surfaces , 1999 .

[17]  J. E. Myers,et al.  Nucleation studies in pool boiling on thin plates using liquid crystals , 1971 .

[18]  S. Maruyama,et al.  MOLECULAR DYNAMICS SIMULATION OF HETEROGENEOUS NUCLEATION OF A LIQUID DROPLET ON A SOLID SURFACE , 2002, Proceeding of Heat Transfer and Transport Phenomena in Microscale.

[19]  E. Mccafferty,et al.  Surface Properties of Hydroxyl Groups in the Air‐Formed Oxide Film on Titanium , 1999 .

[20]  S. Nishio,et al.  Observation of boiling structures in high heat-flux boiling , 1998 .

[21]  R. Dean,et al.  The Formation of Bubbles , 1944 .

[22]  Kenneth W. Cooper,et al.  Bubble formation in animals. I. Physical factors , 1944 .

[23]  András Jánossy,et al.  “高磁場Gd3+電子スピン共鳴により測定したYBa2Cu4O8における磁場誘起低エネルギースピン励起”へのコメント , 2001 .

[24]  B. Widom,et al.  Role of surface forces in heterogeneous nucleation on wettable nuclei , 1996 .

[25]  F. M. Kuni,et al.  REVIEWS OF TOPICAL PROBLEMS: Theory of heterogeneous nucleation for vapor undergoing a gradual metastable state formation , 2001 .

[26]  Akira Sakurai,et al.  Mechanisms of transitions to film boiling at CHFs in subcooled and pressurized liquids due to steady and increasing heat inputs , 2000 .

[27]  S. Bankoff Entrapment of gas in the spreading of a liquid over a rough surface , 1958 .

[28]  Y. Hsu On the Size Range of Active Nucleation Cavities on a Heating Surface , 1962 .