Microwave Sensing of Moisture Content in Concrete Using Open-Ended Rectangular Waveguide

The existence of moisture in concrete is a major cause of damage to the concrete structure, so there is an increasing need for nondestructive detection and monitoring of moisture content in concrete. Microwave nondestructive testing (MNDT) techniques have advantages over other NDT methods (such as radiography, ultrasonic, and eddy current) regarding low cost, good penetration in nonmetallic materials, good resolution and requirement of only one face of material for testing. In this paper, microwave open-ended rectangular waveguide was used to measure the electromagnetic properties of Portland cement concrete (PCC) over a frequency range of 7.0 to 13.0 GHz. PCC specimens of six different water cement ratio (w/c) were prepared. PCC dielectric properties were evaluated at different moisture content ranges from saturated to oven dry. The results show reflection coefficients, dielectric constants and loss factors increase with increasing moisture content of PCC. At the same values of moisture content, the reflection coefficients, dielectric constants and loss factors of PCC increase with decreasing w/c ratio. The measured values of reflection coefficients, dielectric constants and loss factors can be used to determine the moisture content of PCC.