Polymeric photovoltaics with various metallic plasmonic nanostructures

Broadband light absorption enhancement is numerically investigated for the active light harvesting layer of an organic photovoltaic (OPV), which consists of a blend of poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM). Periodic plasmonic nanostructures placed above and below the active layer incorporate Ag, Al, Au, or a combination of two different metals. Three dimensional (3D) full-field electromagnetic simulations are applied to determine the effect of varying the metal employed in the plasmonic nanostructures on the absorption enhancement of the OPV. In addition, the geometric parameters (e.g., film thickness, period, and diameter) of the symmetrically distributed top and bottom metal (Ag, Al, or Au) nanostructures were varied to optimize the device structure and delineate the mechanism(s) leading to the absorption enhancement. A spectrally broadband, polarization-insensitive, and wide-angle absorption enhancement is obtained using a double pl...

[1]  Wei Lin Leong,et al.  Solution-processed small-molecule solar cells with 6.7% efficiency. , 2011, Nature materials.

[2]  Shanhui Fan,et al.  Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices. , 2010, Nano letters.

[3]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[4]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[5]  Srinivas Sista,et al.  Efficient Polymer Solar Cells with Thin Active Layers Based on Alternating Polyfluorene Copolymer/Fullerene Bulk Heterojunctions , 2009 .

[6]  Daniel Abou-Ras,et al.  Development of thin‐film Cu(In,Ga)Se2 and CdTe solar cells , 2004 .

[7]  C. Brabec,et al.  Effect of LiF/metal electrodes on the performance of plastic solar cells , 2002 .

[8]  Srinivas Sista,et al.  Highly Efficient Tandem Polymer Photovoltaic Cells , 2010, Advanced materials.

[9]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[10]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[11]  Marvin J. Weber,et al.  Handbook of Optical Materials , 2002 .

[12]  A. Ostfeld,et al.  Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics , 2011 .

[13]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.

[14]  Zakya H. Kafafi,et al.  Double plasmonic structure design for broadband absorption enhancement in molecular organic solar cells , 2011 .

[15]  Xiangang Luo,et al.  Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes , 2010, Advanced materials.

[16]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[17]  W. Chew,et al.  Angular response of thin-film organic solar cells with periodic metal back nanostrips. , 2011, Optics letters.

[18]  Yidong Huang,et al.  Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells. , 2009, Optics letters.

[19]  Hilmi Volkan Demir,et al.  Volumetric plasmonic resonator architecture for thin-film solar cells , 2011 .

[20]  Peter Bienstman,et al.  Plasmonic absorption enhancement in organic solar cells with thin active layers , 2009 .

[21]  I. Samuel,et al.  Exciton Diffusion Measurements in Poly(3‐hexylthiophene) , 2008 .

[22]  Yi Hong,et al.  Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles , 2009 .

[23]  Hilmi Volkan Demir,et al.  Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations. , 2011, Optics express.

[24]  Lei Zhang,et al.  Photonic crystal geometry for organic solar cells. , 2009, Nano letters.

[25]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[26]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[27]  Fan-Ching Chien,et al.  Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. , 2011, ACS nano.

[28]  Martin A. Green,et al.  Recent developments in photovoltaics , 2004 .

[29]  E. Arias,et al.  Silver nanoparticles functionalized in situ with the conjugated polymer (PEDOT:PSS). , 2009, Journal of nanoscience and nanotechnology.

[30]  Jccm Boukje Huijben,et al.  26.1% thin-film GaAs solar cell using epitaxial lift-off , 2009 .

[31]  Stephen R. Forrest,et al.  Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films , 2003, Nature.

[32]  H. Murata,et al.  Thinking small for solar , 2012 .

[33]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[34]  John R. Reynolds,et al.  High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells , 2011, Nature Photonics.

[35]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[36]  Qiaoqiang Gan,et al.  Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics , 2010, 2010 IEEE Photinic Society's 23rd Annual Meeting.

[37]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[38]  Bernard Geffroy,et al.  Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances , 2006 .

[39]  Martin A. Green,et al.  Third generation photovoltaics: solar cells for 2020 and beyond , 2002 .

[40]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[41]  Shanhui Fan,et al.  Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings , 2010 .

[42]  Wei Ding,et al.  Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array. , 2013, Optics express.

[43]  Edward S. Barnard,et al.  Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements , 2009 .

[44]  W. Chew,et al.  Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells , 2011 .

[45]  Kitt Reinhardt,et al.  Broadband light absorption enhancement in thin-film silicon solar cells. , 2010, Nano letters.

[46]  Peter Peumans,et al.  An effective light trapping configuration for thin-film solar cells , 2007 .

[47]  Harry A Atwater,et al.  Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. , 2011, Nano letters.

[48]  Nils-Krister Persson,et al.  Surface plasmon increase absorption in polymer photovoltaic cells , 2007 .