Human diabetes is associated with hyperreactivity of vascular smooth muscle cells due to altered subcellular Ca2+ distribution.

Alterations of vascular smooth muscle function have been implicated in the development of vascular complications and circulatory dysfunction in diabetes. However, little is known about changes in smooth muscle contractility and the intracellular mechanisms contributing to altered responsiveness of blood vessels of diabetic patients. Therefore, smooth muscle and endothelial cell function were assessed in 20 patients with diabetes and compared with 41 age-matched control subjects. In rings from uterine arteries, smooth muscle sensitivity to K+, norepinephrine (NE), and phenylephrine (PE) was enhanced by 1.4-, 2.3-, and 9.7-fold, respectively, and endothelium-dependent relaxation was reduced by 64% in diabetic patients, as compared with control subjects. In addition, in freshly isolated smooth muscle cells from diabetic patients, an increased perinuclear Ca2+ signaling to K+ (30 mmol/l >73%; 60 mmol/l >68%) and NE (300 nmol/l >86%; 10 micromol/l >67%) was found. In contrast, subplasmalemmal Ca2+ response, which favors smooth muscle relaxation caused by activation of Ca2+-activated K+ channels, was reduced by 38% in diabetic patients as compared with control subjects, indicating a significant change in the subcellular Ca2+ distribution in vascular smooth muscle cells in diabetic patients. In contrast to the altered Ca2+ signaling found in freshly isolated cells from diabetic patients, in cultured smooth muscle cells isolated from control subjects and diabetic patients, no difference in the intracellular Ca2+ signaling to stimulation with either K+ or NE was found. Furthermore, production of superoxide anion (*O2-) in intact and endothelium-denuded arteries from diabetic patients was increased by 150 and 136%, respectively. Incubation of freshly isolated smooth muscle cells from control subjects with the *O2- -generating system xanthine oxidase/hypoxanthine mimicked the effect of diabetic patients on subcellular Ca2+ distribution in a superoxide dismutase-sensitive manner. We conclude that in diabetic subjects, smooth muscle reactivity is increased because of changes in subcellular Ca2+ distribution on cell activation. Increased *O2- production may play a crucial role in the alteration of smooth muscle function.

[1]  G. Pieper,et al.  Short-term oral administration of L-arginine reverses defective endothelium-dependent relaxation and cGMP generation in diabetes. , 1996, European journal of pharmacology.

[2]  G. Pieper,et al.  Chronic treatment in vivo with dimethylthiourea, a hydroxyl radical scavenger, prevents diabetes-induced endothelial dysfunction. , 1996, Journal of cardiovascular pharmacology.

[3]  K. Kamata,et al.  Impairment of endothelium‐dependent relaxation and changes in levels of cyclic GMP in aorta from streptozotocin‐induced diabetic rats , 1989, British journal of pharmacology.

[4]  D. Agrawal,et al.  Vascular responses to agonists in rat mesenteric artery from diabetic rats. , 1987, Canadian journal of physiology and pharmacology.

[5]  K. Morgan,et al.  Mechanisms of smooth muscle contraction. , 1996, Physiological reviews.

[6]  R. Cohen,et al.  Free radicals mediate endothelial cell dysfunction caused by elevated glucose. , 1992, The American journal of physiology.

[7]  M. Inazu,et al.  Calcium mobilization and phosphatidylinositol turnover in vas deferens smooth muscle of diabetic rats. , 1989, European journal of pharmacology.

[8]  L. Li,et al.  Acetylcholine-sensitive intracellular Ca2+ store in fresh endothelial cells and evidence for ryanodine receptors. , 1995, Circulation research.

[9]  Y. Ouchi,et al.  Augmented Ca2+ influx is involved in the mechanism of enhanced proliferation of cultured vascular smooth muscle cells from spontaneously diabetic Goto-Kakizaki rats. , 1997, Atherosclerosis.

[10]  K. Kamata,et al.  Mechanisms of increased responses of the aorta to alpha-adrenoceptor agonists in streptozotocin-induced diabetic rats. , 1988, Journal of pharmacobio-dynamics.

[11]  U. Steinbrecher Role of superoxide in endothelial-cell modification of low-density lipoproteins. , 1988, Biochimica et biophysica acta.

[12]  P. Taylor,et al.  Prevention by insulin treatment of endothelial dysfunction but not enhanced noradrenaline‐induced contractility in mesenteric resistance arteries from streptozotocin‐induced diabetic rats , 1994, British journal of pharmacology.