BCF-groups with elevated rank distribution

Infinitely many large Schur σ-groups G with logarithmic order lo(G) = 19+ e, nonelementary bicyclic commutator quotient G/G′ ≃ C3e × C3, e ≥ 2, elevated rank distribution ̺(G) = (3, 3, 3; 3), punctured transfer kernel type κ(G) ∼ (144; 4) and soluble length sl(G) = 3 are constructed. Up to e ≤ 4, they are realized as 3-class field tower groups Gal(F3 (K)/K) of imaginary quadratic number fields K = Q( √ d), d < 0. Their metabelianizations M = G/G′′ are BCF-groups with lo(M) = 8+e and bicyclic third lower central factor γ3(M)/γ4(M) ≃ C3×C3.

[1]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[2]  M. Arrigoni On Schur σ—Groups , 1998 .

[3]  Charles R. Leedham-Green,et al.  On the Classification of Groups of Prime-Power Order by Coclass: the 3-Groups of Coclass 2 , 2013, Int. J. Algebra Comput..

[4]  N. Boston,et al.  Heuristics for p-class towers of imaginary quadratic fields , 2011, 1111.4679.

[5]  The Capitulation Problem in Class Field Theory , 2012, 1205.0707.

[6]  D. C. Mayer Periodic Bifurcations in Descendant Trees of Finite p-Groups , 2015, 1502.03390.

[7]  W. Bosma,et al.  HANDBOOK OF MAGMA FUNCTIONS , 2011 .

[8]  D. C. Mayer Artin transfer patterns on descendant trees of finite p-groups , 2015, 1511.07819.

[9]  E. Artin Idealklassen in oberkörpern und allgemeines reziprozitätsgesetz , 1929 .

[10]  D. C. Mayer p-Capitulation over number fields with p-class rank two , 2016, 1605.03695.

[11]  E. Artin Beweis des allgemeinen Reziprozitätsgesetzes , 1927 .

[12]  George Havas,et al.  A computer aided classification of certain groups of prime power order , 1977, Bulletin of the Australian Mathematical Society.

[13]  E. A. O'Brien,et al.  The p-Group Generation Algorithm , 1990, J. Symb. Comput..

[14]  Claus Fieker,et al.  Computing class fields via the Artin map , 2001, Math. Comput..

[15]  Franz-Peter Heider,et al.  Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. , 1982 .

[16]  A. Scholz,et al.  Die Hauptideale der kubischen Klassenkörper imaginär-quadratischer Zahlkörper: ihre rechnerische Bestimmung und ihr Einfluß auf den Klassenkörperturm. , 1934 .

[17]  D. C. Mayer Transfers of metabelian p-groups , 2012, 1403.3896.

[18]  M. F. Newman,et al.  Determination of groups of prime-power order , 1977 .