The local discontinuous Galerkin finite element method for Burger's equation

Abstract In this paper, we study the local discontinuous Galerkin (LDG) finite element method for solving a nonlinear Burger’s equation with Dirichlet boundary conditions. Based on the Hopf–Cole transformation, we transform the original problem into a linear heat equation with Neumann boundary conditions. The heat equation is then solved by the LDG finite element method with special chosen numerical flux. Theoretical analysis shows that this method is stable and the ( k + 1 ) th order of convergence rate when the polynomials P k are used. Finally, we present some examples of P k polynomials with 1 ≤ k ≤ 4 to demonstrate the high-order accuracy of this method. The numerical results are also shown to be more accurate than some available results given in the literature.

[1]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[2]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .

[3]  Timothy J. Barth,et al.  High-order methods for computational physics , 1999 .

[4]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[5]  Bernardo Cockburn,et al.  Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems , 2002, Math. Comput..

[6]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[7]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[8]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[9]  George Em Karniadakis,et al.  The Development of Discontinuous Galerkin Methods , 2000 .

[10]  Paul Castillo,et al.  An Optimal Estimate for the Local Discontinuous Galerkin Method , 2000 .

[11]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[12]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[13]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[14]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[15]  H. A. Hosham,et al.  Fourth-order finite difference method for solving Burgers' equation , 2005, Appl. Math. Comput..

[16]  W. L. Wood An exact solution for Burger's equation , 2006 .

[17]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[18]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[19]  E. Hopf The partial differential equation ut + uux = μxx , 1950 .

[20]  S. Kutluay,et al.  Numerical solution of one-dimesional Burgers equation: explicit and exact-explicit finite difference methods , 1999 .

[21]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[22]  Wenyuan Liao,et al.  An implicit fourth-order compact finite difference scheme for one-dimensional Burgers' equation , 2008, Appl. Math. Comput..

[23]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[24]  A. Cook,et al.  A finite element approach to Burgers' equation , 1981 .

[25]  J. Cole On a quasi-linear parabolic equation occurring in aerodynamics , 1951 .

[26]  George W. Platzman,et al.  A table of solutions of the one-dimensional Burgers equation , 1972 .