Efficient space-time reduced order model for linear dynamical systems in Python using less than 120 lines of code

A classical reduced order model (ROM) for dynamical problems typically involves only the spatial reduction of a given problem. Recently, a novel space-time ROM for linear dynamical problems has been developed, which further reduces the problem size by introducing a temporal reduction in addition to a spatial reduction without much loss in accuracy. The authors show an order of a thousand speed-up with a relative error of less than 0.00001 for a large-scale Boltzmann transport problem. In this work, we present for the first time the derivation of the space-time Petrov-Galerkin projection for linear dynamical systems and its corresponding block structures. Utilizing these block structures, we demonstrate the ease of construction of the space-time ROM method with two model problems: 2D diffusion and 2D convection diffusion, with and without a linear source term. For each problem, we demonstrate the entire process of generating the full order model (FOM) data, constructing the space-time ROM, and predicting the reduced-order solutions, all in less than 120 lines of Python code. We compare our Petrov-Galerkin method with the traditional Galerkin method and show that the space-time ROMs can achieve O(100) speed-ups with O(0.001) to O(0.0001) relative errors for these problems. Finally, we present an error analysis for the space-time Petrov-Galerkin projection and derive an error bound, which shows an improvement compared to traditional spatial Galerkin ROM methods.

[1]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[2]  Earl H. Dowell,et al.  Three-Dimensional Transonic Aeroelasticity Using Proper Orthogonal Decomposition-Based Reduced-Order Models , 2001 .

[3]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[4]  Alexandre Megretski,et al.  Fourier Series for Accurate, Stable, Reduced-Order Models in Large-Scale Linear Applications , 2005, SIAM J. Sci. Comput..

[5]  Sean P. Kenny,et al.  Needs and Opportunities for Uncertainty- Based Multidisciplinary Design Methods for Aerospace Vehicles , 2002 .

[6]  Youngsoo Choi,et al.  Simultaneous Analysis and Design in Pde-constrained Optimization a Dissertation Submitted to the Institute for Computational and Mathematical Engineering and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy , 2013 .

[7]  Danny C. Sorensen,et al.  Balanced Truncation Model Reduction for a Class of Descriptor Systems with Application to the Oseen Equations , 2008, SIAM J. Sci. Comput..

[8]  Serkan Gugercin,et al.  H2 Model Reduction for Large-Scale Linear Dynamical Systems , 2008, SIAM J. Matrix Anal. Appl..

[9]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[10]  J. Nathan Kutz,et al.  Variable Projection Methods for an Optimized Dynamic Mode Decomposition , 2017, SIAM J. Appl. Dyn. Syst..

[11]  Adrien Leygue,et al.  An overview of the proper generalized decomposition with applications in computational rheology , 2011 .

[12]  Naoya Takeishi,et al.  Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition , 2017, NIPS.

[13]  Michel S. Nakhla,et al.  Generalized moment-matching methods for transient analysis of interconnect networks , 1992, [1992] Proceedings 29th ACM/IEEE Design Automation Conference.

[14]  Youngsoo Choi,et al.  Space-time reduced order model for large-scale linear dynamical systems with application to Boltzmann transport problems , 2019, J. Comput. Phys..

[15]  Youngsoo Choi,et al.  A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder , 2020, J. Comput. Phys..

[16]  Karsten Urban,et al.  An improved error bound for reduced basis approximation of linear parabolic problems , 2013, Math. Comput..

[17]  Clarence W. Rowley,et al.  Snapshot-Based Balanced Truncation for Linear Time-Periodic Systems , 2007, IEEE Transactions on Automatic Control.

[18]  F. Chinesta,et al.  The Proper Generalized Decomposition (PGD) as a numerical procedure to solve 3D cracked plates in linear elastic fracture mechanics , 2013 .

[19]  L. Sirovich TURBULENCE AND THE DYNAMICS OF COHERENT STRUCTURES PART I : COHERENT STRUCTURES , 2016 .

[20]  Mark N. Glauser,et al.  Stochastic estimation and proper orthogonal decomposition: Complementary techniques for identifying structure , 1994 .

[21]  Jeffrey P. Thomas,et al.  Proper Orthogonal Decomposition Technique for Transonic Unsteady Aerodynamic Flows , 2000 .

[22]  C. Farhat,et al.  Design optimization using hyper-reduced-order models , 2015 .

[23]  Clifford T. Mullis,et al.  Synthesis of minimum roundoff noise fixed point digital filters , 1976 .

[24]  G. Kerschen,et al.  The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview , 2005 .

[25]  Trenton Kirchdoerfer,et al.  Accelerating design optimization using reduced order models , 2019, ArXiv.

[26]  Masayuki Yano,et al.  A Space-Time Petrov-Galerkin Certified Reduced Basis Method: Application to the Boussinesq Equations , 2014, SIAM J. Sci. Comput..

[27]  Hitay Ozbay,et al.  Proper orthogonal decomposition for reduced order modeling: 2D heat flow , 2003, Proceedings of 2003 IEEE Conference on Control Applications, 2003. CCA 2003..

[28]  Alessandro Astolfi,et al.  Model Reduction by Moment Matching for Linear and Nonlinear Systems , 2010, IEEE Transactions on Automatic Control.

[29]  Franz Bamer,et al.  Application of the proper orthogonal decomposition for linear and nonlinear structures under transient excitations , 2012 .

[30]  Steven L. Brunton,et al.  Multiresolution Dynamic Mode Decomposition , 2015, SIAM J. Appl. Dyn. Syst..

[31]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[32]  Francisco Chinesta,et al.  On the deterministic solution of multidimensional parametric models using the Proper Generalized Decomposition , 2010, Math. Comput. Simul..

[33]  Christophe Fiter,et al.  Balanced truncation for linear switched systems , 2013, Adv. Comput. Math..

[34]  S. Volkwein,et al.  Proper Orthogonal Decomposition for Linear-Quadratic Optimal Control , 2013 .

[35]  G. Yoon Structural topology optimization for frequency response problem using model reduction schemes , 2010 .

[36]  Pierre Ladevèze,et al.  Proper Generalized Decomposition applied to linear acoustic: A new tool for broad band calculation , 2014 .

[37]  Elías Cueto,et al.  Proper generalized decomposition of time‐multiscale models , 2012 .

[38]  A. Antoulas,et al.  A framework for the solution of the generalized realization problem , 2007 .

[39]  Kookjin Lee,et al.  Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders , 2018, J. Comput. Phys..

[40]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids - Part II: Transient simulation using space-time separated representations , 2007 .

[41]  Carsten Hartmann,et al.  Balanced Truncation of Linear Second-Order Systems: A Hamiltonian Approach , 2010, Multiscale Model. Simul..

[42]  Belinda B. King,et al.  Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations , 2001 .

[43]  F. Chinesta,et al.  A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .

[44]  Youngsoo Choi,et al.  Space-time least-squares Petrov-Galerkin projection for nonlinear model reduction , 2017, SIAM J. Sci. Comput..

[45]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[46]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[47]  Charbel Farhat,et al.  A Practical Factorization of a Schur Complement for PDE-Constrained Distributed Optimal Control , 2013, Journal of Scientific Computing.

[48]  N. Anders Petersson,et al.  Discrete Adjoints for Accurate Numerical Optimization with Application to Quantum Control , 2020 .

[49]  Z. Bai Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .

[50]  Steven L. Brunton,et al.  Dynamic mode decomposition - data-driven modeling of complex systems , 2016 .

[51]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[52]  Clarence W. Rowley,et al.  Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses , 2012, J. Nonlinear Sci..

[53]  Fortunato Santucci,et al.  Generalized Moment Matching for the Linear Combination of Lognormal RVs - Application to Outage Analysis in Wireless Systems , 2006, 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications.

[54]  O. Sigmund,et al.  Efficient use of iterative solvers in nested topology optimization , 2010 .

[55]  Juan J. Alonso,et al.  Airfoil design optimization using reduced order models based on proper orthogonal decomposition , 2000 .

[56]  Henrik Sandberg,et al.  Balanced truncation of linear time-varying systems , 2004, IEEE Transactions on Automatic Control.

[57]  Charbel Farhat,et al.  Gradient-based constrained optimization using a database of linear reduced-order models , 2015, J. Comput. Phys..

[58]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parameter dependent elliptic systems , 2007 .

[59]  Christian Gogu,et al.  Improving the efficiency of large scale topology optimization through on‐the‐fly reduced order model construction , 2015 .

[60]  Charbel Farhat,et al.  Stabilization of projection‐based reduced‐order models , 2012 .

[61]  Alessandro Astolfi,et al.  Model Reduction by Moment Matching for Linear and Nonlinear Systems , 2010, IEEE Transactions on Automatic Control.

[62]  Roger Ohayon,et al.  Hybrid proper orthogonal decomposition formulation for linear structural dynamics , 2008 .

[63]  Elías Cueto,et al.  Proper generalized decomposition of multiscale models , 2010 .

[64]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .

[65]  Steven L. Brunton,et al.  Dynamic Mode Decomposition with Control , 2014, SIAM J. Appl. Dyn. Syst..

[66]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[67]  Ioannis G Kevrekidis,et al.  Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator. , 2017, Chaos.

[68]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[69]  Robert W. Walters,et al.  Uncertainty analysis for fluid mechanics with applications , 2002 .

[70]  Karsten Urban,et al.  A space-time hp-interpolation-based certified reduced basis method for Burgers' equation , 2014 .

[71]  Daniel A. White,et al.  A dual mesh method with adaptivity for stress-constrained topology optimization , 2020 .

[72]  Stefan Volkwein,et al.  Error estimates for abstract linear–quadratic optimal control problems using proper orthogonal decomposition , 2008, Comput. Optim. Appl..

[73]  Muruhan Rathinam,et al.  A New Look at Proper Orthogonal Decomposition , 2003, SIAM J. Numer. Anal..

[74]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[75]  P. Schmid,et al.  Applications of the dynamic mode decomposition , 2011 .

[76]  A. Antoulas,et al.  H 2 Model Reduction for Large-scale Linear Dynamical Systems * , 2022 .