A meshfree method based on radial basis functions for the eigenvalues of transient Stokes equations

Abstract In this paper, a meshfree method based on radial basis functions (RBFs) is developed to approximate the eigenvalues of Stokes equations in primitive variables in a square domain. To avoid the inaccuracy near the boundaries, the collocation on boundary technique is applied. This approach leads to more accurate solutions in comparisons with finite element methods. To investigate the role of shape parameter in approximation, some discussion on shape parameter is presented.

[1]  J. Kelliher Eigenvalues of the Stokes operator versus the Dirichlet Laplacian in the plane , 2010 .

[2]  Christian Wieners A numerical existence proof of nodal lines for the first eigenfunction of the plate equation , 1996 .

[3]  Musa A. Mammadov,et al.  Solving a system of nonlinear integral equations by an RBF network , 2009, Comput. Math. Appl..

[4]  Vadlamani Ravi,et al.  Soft computing system for bank performance prediction , 2008, Appl. Soft Comput..

[5]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[6]  A. Cheng,et al.  Solution of stokes flow using an iterative DRBEM based on compactly-supported, positive-definite radial basis function☆ , 2002 .

[7]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[8]  Roland Glowinski,et al.  On a mixed finite element approximation of the Stokes problem (I) , 1979 .

[9]  N. Pindoriya,et al.  An Adaptive Wavelet Neural Network-Based Energy Price Forecasting in Electricity Markets , 2008, IEEE Transactions on Power Systems.

[10]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[11]  Wei Chen,et al.  Approximation of an Eigenvalue Problem Associated with the Stokes Problem by the Stream Function-Vorticity-Pressure Method , 2006 .

[12]  Tobin A. Driscoll,et al.  Computing eigenmodes ofelliptic operators using radial basis functions , 2004 .

[13]  B. Fornberg,et al.  A numerical study of some radial basis function based solution methods for elliptic PDEs , 2003 .

[14]  Fan Yang,et al.  Implementation of an RBF neural network on embedded systems: real-time face tracking and identity verification , 2003, IEEE Trans. Neural Networks.

[15]  Junping Wang,et al.  Superconvergence of Finite Element Approximations for the Stokes Problem by Projection Methods , 2001, SIAM J. Numer. Anal..

[16]  O. Pironneau,et al.  Error estimates for finite element method solution of the Stokes problem in the primitive variables , 1979 .

[17]  S. Seifollahi,et al.  Normalized RBF networks: application to a system of integral equations , 2008 .

[18]  Mehdi Dehghan,et al.  A method for solving partial differential equations via radial basis functions: Application to the heat equation , 2010 .

[19]  Yinnian He,et al.  Modified homotopy perturbation method for solving the Stokes equations , 2011, Comput. Math. Appl..

[20]  Aihui Zhou,et al.  The full approximation accuracy for the stream function-vorticity-pressure method , 1994 .

[21]  C. Pozrikidis On the method of functional equations and the performance of desingularized boundary element methods , 2000 .

[22]  M. Krízek Conforming finite element approximation of the Stokes problem , 1990 .

[23]  Václav Skala,et al.  Radial Basis Function Use for the restoration of Damaged Images , 2004, ICCVG.

[24]  Min Gan,et al.  A locally linear RBF network-based state-dependent AR model for nonlinear time series modeling , 2010, Inf. Sci..

[25]  B. Mercier,et al.  Eigenvalue approximation by mixed and hybrid methods , 1981 .

[26]  Jean-Luc Guermond,et al.  Vorticity-Velocity Formulations of the Stokes Problem in 3D , 1999 .

[27]  E. Leriche,et al.  Are there localized eddies in the trihedral corners of the Stokes eigenmodes in cubical cavity , 2011 .

[28]  L. E. Fraenkel,et al.  NAVIER-STOKES EQUATIONS (Chicago Lectures in Mathematics) , 1990 .

[29]  Xiu Ye Superconvergence of nonconforming finite element method for the Stokes equations , 2002 .

[30]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[31]  Hehu Xie,et al.  Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods , 2009 .

[32]  T. Driscoll,et al.  Observations on the behavior of radial basis function approximations near boundaries , 2002 .

[33]  H. Power,et al.  Boundary element solution of thermal creep flow in microfluidic devices , 2012 .

[34]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[35]  Simon J. Cox,et al.  Solving an eigenvalue problem with a periodic domain using radial basis functions , 2009 .

[36]  Hehu Xie,et al.  Asymptotic expansions and extrapolations of eigenvalues for the stokes problem by mixed finite element methods , 2008 .

[37]  E. Kansa,et al.  Improved multiquadric method for elliptic partial differential equations via PDE collocation on the boundary , 2002 .

[38]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[39]  Jack Dongarra,et al.  LAPACK's user's guide , 1992 .

[40]  A. Golbabai,et al.  A meshless method for numerical solution of the coupled Schrödinger-KdV equations , 2011, Computing.