Genetic profile of ductal adenocarcinoma of the prostate.

[1]  M. Rubin,et al.  Genomic Correlates to the Newly Proposed Grading Prognostic Groups for Prostate Cancer. , 2016, European urology.

[2]  Steven J. M. Jones,et al.  The Molecular Taxonomy of Primary Prostate Cancer , 2015, Cell.

[3]  J. Hicks,et al.  PTEN loss and ERG protein expression are infrequent in prostatic ductal adenocarcinomas and concurrent acinar carcinomas , 2015, The Prostate.

[4]  Lawrence D. True,et al.  Integrative Clinical Genomics of Advanced Prostate Cancer , 2015, Cell.

[5]  J. Squire,et al.  Recurrent copy number alterations in prostate cancer: an in silico meta-analysis of publicly available genomic data. , 2014, Cancer genetics.

[6]  Chris Sander,et al.  Copy number alteration burden predicts prostate cancer relapse , 2014, Proceedings of the National Academy of Sciences.

[7]  S. Gabriel,et al.  Pan-cancer patterns of somatic copy-number alteration , 2013, Nature Genetics.

[8]  J. Korbel,et al.  Genomic deletion of MAP3K7 at 6q12-22 is associated with early PSA recurrence in prostate cancer and absence of TMPRSS2:ERG fusions , 2013, Modern Pathology.

[9]  I. Thompson,et al.  Single‐cell analysis of circulating tumor cells identifies cumulative expression patterns of EMT‐related genes in metastatic prostate cancer , 2013, The Prostate.

[10]  R. Eeles,et al.  Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[11]  K. Kinzler,et al.  Cancer Genome Landscapes , 2013, Science.

[12]  L. Egevad,et al.  Histopathological features of ductal adenocarcinoma of the prostate in 1,051 radical prostatectomy specimens , 2013, Virchows Archiv.

[13]  T. H. van der Kwast,et al.  Quantitative Proteomics Reveals That Enzymes of the Ketogenic Pathway Are Associated with Prostate Cancer Progression* , 2013, Molecular & Cellular Proteomics.

[14]  J. Lindberg,et al.  Exome sequencing of prostate cancer supports the hypothesis of independent tumour origins. , 2013, European urology.

[15]  G. Kristiansen,et al.  Rearrangement of the ETS genes ETV-1, ETV-4, ETV-5, and ELK-4 is a clonal event during prostate cancer progression. , 2012, Human pathology.

[16]  Jennifer R. Rider,et al.  The TMPRSS2:ERG Rearrangement, ERG Expression, and Prostate Cancer Outcomes: A Cohort Study and Meta-analysis , 2012, Cancer Epidemiology, Biomarkers & Prevention.

[17]  Jianfeng Xu,et al.  Suppression of Tak1 promotes prostate tumorigenesis. , 2012, Cancer research.

[18]  A. Sivachenko,et al.  Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer , 2012, Nature Genetics.

[19]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[20]  Benjamin J. Raphael,et al.  The Mutational Landscape of Lethal Castrate Resistant Prostate Cancer , 2012, Nature.

[21]  J. Cashy,et al.  Incidence and outcomes of ductal carcinoma of the prostate in the USA: analysis of data from the Surveillance, Epidemiology, and End Results program , 2012, BJU international.

[22]  Wei Li,et al.  Definition of a FoxA1 Cistrome that is crucial for G1 to S-phase cell-cycle transit in castration-resistant prostate cancer. , 2011, Cancer research.

[23]  M. Shen,et al.  Molecular genetics of prostate cancer: new prospects for old challenges. , 2010, Genes & development.

[24]  C. Sander,et al.  Integrative genomic profiling of human prostate cancer. , 2010, Cancer cell.

[25]  P. Humphrey,et al.  Gene expression profiles of ductal versus acinar adenocarcinoma of the prostate , 2009, Modern Pathology.

[26]  E. Platz,et al.  TMPRSS2-ERG gene fusions are infrequent in prostatic ductal adenocarcinomas , 2009, Modern Pathology.

[27]  P. Ekman,et al.  Expression of PDX‐1 in prostate cancer, prostatic intraepithelial neoplasia and benign prostatic tissue   , 2008, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[28]  Rocío Martín,et al.  Effect of Prolactin and Bromocriptine on the Population of Prostate Neuroendocrine Cells from Intact and Cyproterone Acetate‐Treated Rats: Stereological and Immunohistochemical Study , 2007, Anatomical record.

[29]  Jin Woo Kim,et al.  DNA copy number alterations in prostate cancers: A combined analysis of published CGH studies , 2007, The Prostate.

[30]  Mahul B Amin,et al.  Update on the Gleason Grading System for Prostate Cancer: Results of an International Consensus Conference of Urologic Pathologists , 2006, Advances in anatomic pathology.

[31]  J. Tchinda,et al.  Recurrent Fusion of TMPRSS2 and ETS Transcription Factor Genes in Prostate Cancer , 2005, Science.

[32]  C. Ormandy,et al.  Prostate hyperplasia in a transgenic mouse with prostate-specific expression of prolactin. , 2003, Endocrinology.

[33]  J. Epstein,et al.  Ductal adenocarcinoma of the prostate diagnosed on needle biopsy: correlation with clinical and radical prostatectomy findings and progression. , 1999, The American journal of surgical pathology.

[34]  D. Bostwick,et al.  Does prostatic ductal adenocarcinoma exist? , 1999, The American journal of surgical pathology.

[35]  C. Hänni,et al.  Molecular phylogeny of the ETS gene family , 1999, Oncogene.

[36]  P. Walsh,et al.  Prostatic duct adenocarcinoma. Findings at radical prostatectomy , 1991, Cancer.

[37]  G. Farrow,et al.  Prostatic adenocarcinoma of ductal origin , 1973, Cancer.

[38]  Jonathan I. Epstein,et al.  WHO Classification of of Tumours of the Urinary System and Male Genital Organs , 2016 .

[39]  S. Brewster,et al.  Wnt signalling and prostate cancer , 2005, Prostate Cancer and Prostatic Diseases.