Basis Function Models for Nonstationary Continuous-Time Trajectories

[1]  William A. Link,et al.  Bayesian Multimodel Inference by RJMCMC: A Gibbs Sampling Approach , 2013 .

[2]  Carlo Ratti,et al.  Real-Time Urban Monitoring Using Cell Phones: A Case Study in Rome , 2011, IEEE Transactions on Intelligent Transportation Systems.

[3]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[4]  J. Ramsay Monotone Regression Splines in Action , 1988 .

[5]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[6]  Jacob S. Ivan,et al.  A functional model for characterizing long‐distance movement behaviour , 2016 .

[7]  R. Kays,et al.  Terrestrial animal tracking as an eye on life and planet , 2015, Science.

[8]  P. Guttorp,et al.  Nonparametric Estimation of Nonstationary Spatial Covariance Structure , 1992 .

[9]  P. Diggle,et al.  Bayesian Inference in Gaussian Model-based Geostatistics , 2002 .

[10]  J. Fieberg,et al.  Comparative interpretation of count, presence–absence and point methods for species distribution models , 2012 .

[11]  Ian D. Jonsen,et al.  ROBUST STATE-SPACE MODELING OF ANIMAL MOVEMENT DATA , 2005 .

[12]  Brett T McClintock,et al.  When to be discrete: the importance of time formulation in understanding animal movement , 2014, Movement Ecology.

[13]  Johannes Ledolter,et al.  State-Space Analysis of Wildlife Telemetry Data , 1991 .

[14]  Mevin B Hooten,et al.  Estimating animal resource selection from telemetry data using point process models. , 2013, The Journal of animal ecology.

[15]  Herbert K. H. Lee,et al.  Efficient models for correlated data via convolutions of intrinsic processes , 2005 .

[16]  Catherine A. Calder,et al.  Dynamic factor process convolution models for multivariate space–time data with application to air quality assessment , 2007, Environmental and Ecological Statistics.

[17]  D. Warton,et al.  Correction note: Poisson point process models solve the “pseudo-absence problem” for presence-only data in ecology , 2010, 1011.3319.

[18]  C H Fleming,et al.  Estimating where and how animals travel: an optimal framework for path reconstruction from autocorrelated tracking data. , 2015, Ecology.

[19]  Jun Zhu,et al.  A set of nonlinear regression models for animal movement in response to a single landscape feature , 2005 .

[20]  A. Gelfand,et al.  Gaussian predictive process models for large spatial data sets , 2008, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[21]  D. Brillinger Modeling Spatial Trajectories , 2010 .

[22]  Mark Berman,et al.  Approximating Point Process Likelihoods with Glim , 1992 .

[23]  Mevin B. Hooten,et al.  A guide to Bayesian model selection for ecologists , 2015 .

[24]  D. Higdon Space and Space-Time Modeling using Process Convolutions , 2002 .

[25]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[26]  Brett T. McClintock,et al.  A general discrete‐time modeling framework for animal movement using multistate random walks , 2012 .

[27]  Mevin B Hooten,et al.  Animal movement constraints improve resource selection inference in the presence of telemetry error. , 2015, Ecology.

[28]  Paul J Rathouz,et al.  Accounting for animal movement in estimation of resource selection functions: sampling and data analysis. , 2009, Ecology.

[29]  Noel A Cressie,et al.  Statistics for Spatio-Temporal Data , 2011 .

[30]  Brett T. McClintock,et al.  Modelling animal movement using the Argos satellite telemetry location error ellipse , 2015 .

[31]  Andrew O. Finley,et al.  spBayes for Large Univariate and Multivariate Point-Referenced Spatio-Temporal Data Models , 2013, 1310.8192.

[32]  Ronald P. Barry,et al.  Blackbox Kriging: Spatial Prediction Without Specifying Variogram Models , 1996 .

[33]  David Higdon,et al.  A process-convolution approach to modelling temperatures in the North Atlantic Ocean , 1998, Environmental and Ecological Statistics.

[34]  Peter Leimgruber,et al.  Non‐Markovian maximum likelihood estimation of autocorrelated movement processes , 2014 .

[35]  Juan M. Morales,et al.  EXTRACTING MORE OUT OF RELOCATION DATA: BUILDING MOVEMENT MODELS AS MIXTURES OF RANDOM WALKS , 2004 .

[36]  James E. Dunn,et al.  Analysis of Radio Telemetry Data in Studies of Home Range , 1977 .

[37]  Christopher K. Wikle,et al.  Low-Rank Representations for Spatial Processes , 2010 .

[38]  Devin S Johnson,et al.  Continuous-time correlated random walk model for animal telemetry data. , 2008, Ecology.

[39]  Paul D. Sampson,et al.  Constructions for Nonstationary Spatial Processes , 2010 .

[40]  Mevin B. Hooten,et al.  Agent-Based Inference for Animal Movement and Selection , 2010 .

[41]  Christopher J Paciorek,et al.  Spatial modelling using a new class of nonstationary covariance functions , 2006, Environmetrics.

[42]  Mevin B Hooten,et al.  Models for Bounded Systems with Continuous Dynamics , 2009, Biometrics.

[43]  Erin E. Peterson,et al.  A Moving Average Approach for Spatial Statistical Models of Stream Networks , 2010 .

[44]  M. Hooten,et al.  Velocity-Based Movement Modeling for Individual and Population Level Inference , 2011, PloS one.

[45]  Devin S Johnson,et al.  A General Framework for the Analysis of Animal Resource Selection from Telemetry Data , 2008, Biometrics.

[46]  J. Andrew Royle,et al.  Multiresolution models for nonstationary spatial covariance functions , 2002 .