Comparative cytogenetic analysis of four species of Dendropsophus (Hylinae) from the Brazilian Atlantic forest

[1]  Kevin McDonough Amphibian Species of the World: An Online Reference (Version 6) , 2014 .

[2]  C. Haddad,et al.  Chromosome Evolution in Dendropsophini (Amphibia, Anura, Hylinae) , 2013, Cytogenetic and Genome Research.

[3]  Lilian Ricco Medeiros,et al.  Comparative cytogenetic analysis of some species of the Dendropsophus microcephalus group (Anura, Hylidae) in the light of phylogenetic inferences , 2013, BMC Genetics.

[4]  N. Archidiacono,et al.  Centromere repositioning in mammals , 2011, Heredity.

[5]  A. Pyron,et al.  A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. , 2011, Molecular phylogenetics and evolution.

[6]  B. Noonan,et al.  Phylogenetic position of Dendropsophus gaucheri (Lescure and Marty 2000) highlights the need for an in-depth investigation of the phylogenetic relationships of Dendropsophus (Anura: Hylidae) , 2011 .

[7]  L. F. Toledo,et al.  Comparative cytogenetics of eight species of Cycloramphus (Anura, Cycloramphidae) , 2011 .

[8]  C. Steinlein,et al.  The Chromosomes of Terraranan Frogs. Insights into Vertebrate Cytogenetics , 2010, Cytogenetic and Genome Research.

[9]  Caitlin A. Kuczynski,et al.  An expanded phylogeny of treefrogs (Hylidae) based on nuclear and mitochondrial sequence data. , 2010, Molecular phylogenetics and evolution.

[10]  P. Garcia,et al.  NOR Dispersion, Telomeric Sequence Detection in Centromeric Regions and Meiotic Multivalent Configurations in Species of the Aplastodiscus albofrenatus Group (Anura, Hylidae) , 2009, Cytogenetic and Genome Research.

[11]  G. F. Catroli,et al.  Cytogenetic data on species of the family Hylidae (Amphibia, Anura): results and perspectives. , 2009 .

[12]  M. Yamamoto,et al.  Chromosome evolution in three Brazilian Leptodactylus species (Anura, Leptodactylidae), with phylogenetic considerations. , 2009, Hereditas.

[13]  E. Green,et al.  Comparative sequence analyses reveal sites of ancestral chromosomal fusions in the Indian muntjac genome , 2008, Genome Biology.

[14]  M. Rodrigues,et al.  Chromosomal studies in four species of genus Chaunus (Bufonidae, Anura): localization of telomeric and ribosomal sequences after fluorescence in situ hybridization (FISH) , 2008, Genetica.

[15]  W. Wheeler,et al.  SYSTEMATIC REVIEW OF THE FROG FAMILY HYLIDAE, WITH SPECIAL REFERENCE TO HYLINAE: PHYLOGENETIC ANALYSIS AND TAXONOMIC REVISION , 2005 .

[16]  P. M. Galetti,et al.  Mapping of the 18S and 5S ribosomal RNA genes in the fish Prochilodus argenteus Agassiz, 1829 (Characiformes, Prochilodontidae) , 2004, Genetica.

[17]  D. C. Rossa-Feres,et al.  Chromosomal differentiation of Hyla nana and Hyla sanborni (Anura, Hylidae) with a description of NOR polymorphism in H. nana. , 2003, The Journal of heredity.

[18]  C. Steinlein,et al.  Chromosomal investigation of three Costa Rican frogs from the 30-chromosome radiation of Hyla with the description of a unique geographic variation in nucleolus organizer regions , 1996, Genetica.

[19]  P. deOliveira,et al.  CYTOGENETICS OF 4 BRAZILIAN HYLA SPECIES (AMPHIBIA-ANURA) AND DESCRIPTION OF A CASE WITH A SUPERNUMERARY CHROMOSOME , 1993 .

[20]  A. Baldini,et al.  Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. , 1991, Nucleic acids research.

[21]  S. Long Nomenclature of chromosomes , 1989, Veterinary Record.

[22]  D. A. Black,et al.  Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method , 1980, Experientia.

[23]  A. T. Sumner A simple technique for demonstrating centromeric heterochromatin. , 1972, Experimental cell research.

[24]  R. Kellogg Mexican Tailless Amphibians in the United States National Museum , 1932 .

[25]  R. Punnett,et al.  The journal of genetics , 1910, Zeitschrift für Induktive Abstammungs- und Vererbungslehre.

[26]  Ingo Schubert,et al.  Chromosome evolution. , 2007, Current opinion in plant biology.

[27]  P. Datson,et al.  Ribosomal DNA locus evolution in Nemesia: transposition rather than structural rearrangement as the key mechanism? , 2006, Chromosome Research.

[28]  D. C. Rossa-Feres,et al.  B-chromosomes in two Brazilian populations of Dendropsophus nanus (Anura, Hylidae) , 2006 .

[29]  C. Haddad,et al.  Evaluating the karyotypic diversity in species of Hyla (Anura; Hylidae) with 2n = 30 chromosomes based on the analysis of ten species. , 2005, Folia biologica.

[30]  R. Honeycutt,et al.  Variation within and between nucleolar organizer regions in Australian hylid frogs (Anura) shown by 18S+28S in-situ hybridization , 2004, Genetica.

[31]  B. Pardo,et al.  A Population Analysis of the Structure and Variability of NOR in Salmo Trutta by Ag, CMA3 and ISH , 2004, Genetica.

[32]  J. A. Langone,et al.  Los cromosomas de cuatro especies del género Hyla (Anura: Hylidae) con número diploide de 2N=30 , 1991 .

[33]  D. Green APPENDIX I – Nomenclature for Chromosomes , 1991 .

[34]  D. Schweizer Counterstain-enhanced chromosome banding. , 1981, Human genetics.