Nano-opto-electronics for biomedicine

Nano-opto-electronics for biomedicine is a developing interdisciplinary field. Related areas of this field are tried to be classified and outlined herein. Progresses in the different areas were reviewed based on the research development of the invited experts. Prospects of nano-opto-electronics for biomedicine are discussed.

[1]  Fulin Wu,et al.  Nano-bio interfaces probed by advanced optical spectroscopy: From model system studies to optical biosensors , 2013 .

[2]  Xiaogang Liu,et al.  Photonics: Upconversion goes broadband. , 2012, Nature materials.

[3]  Xiaohua Huang,et al.  Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. , 2008, Accounts of chemical research.

[4]  B. L. Smith,et al.  Biological applications of the AFM: From single molecules to organs , 1997, Int. J. Imaging Syst. Technol..

[5]  Dong Sun,et al.  Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. , 2011, Lab on a chip.

[6]  Meng Wang,et al.  Upconversion nanoparticles: synthesis, surface modification and biological applications. , 2011, Nanomedicine : nanotechnology, biology, and medicine.

[7]  Robert M. Dickson,et al.  Developing luminescent silver nanodots for biological applications. , 2012, Chemical Society reviews.

[8]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[9]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[10]  Michele Follen,et al.  Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. , 2003, Cancer research.

[11]  G. Nienhaus,et al.  Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications , 2011 .

[12]  Thierry Gacoin,et al.  Biological applications of rare-earth based nanoparticles. , 2011, ACS nano.

[13]  Shaoyang Liu,et al.  Application of AFM in microbiology: a review. , 2010, Scanning.

[14]  Q. Zeng,et al.  Effect of protein molecules on the photoluminescence properties and stability of water-soluble CdSe/ZnS core-shell quantum dots , 2013 .

[15]  R Langer,et al.  Microchips as Controlled Drug-Delivery Devices. , 2000, Angewandte Chemie.

[16]  Bozhi Tian,et al.  Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor , 2011, Nature nanotechnology.

[17]  Phaedon Avouris,et al.  Carbon-nanotube photonics and optoelectronics , 2008 .

[18]  Wenli Song,et al.  Star-shaped conjugated oligoelectrolyte for bioimaging in living cells , 2013 .

[19]  Meng Wang,et al.  Optimized Surface Plasmon Resonance Sensitivity of Gold Nanoboxes for Sensing Applications , 2009 .

[20]  Carlos Bustamante,et al.  Recent advances in optical tweezers. , 2008, Annual review of biochemistry.

[21]  Chih-Ching Huang,et al.  Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging , 2012 .

[22]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[23]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[24]  Jiye Cai,et al.  Cinobufacini-induced HeLa cell apoptosis enhanced by curcumin , 2013 .

[25]  Bai-Ou Guan,et al.  High-sensitive and temperature-self-calibrated tilted fiber grating biological sensing probe , 2013 .

[26]  L. Qu,et al.  An Electrochemical Avenue to Green‐Luminescent Graphene Quantum Dots as Potential Electron‐Acceptors for Photovoltaics , 2011, Advanced materials.

[27]  Mattias Goksör,et al.  Optical manipulation in combination with multiphoton microscopy for single-cell studies. , 2004, Applied optics.

[28]  F. Braet,et al.  Carbon Nanomaterials in Biosensors: Should You Use Nanotubes or Graphene? , 2010 .

[29]  Michael S Strano,et al.  Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. , 2009, Nature nanotechnology.

[30]  Anpei Ye,et al.  Single-cell discrimination based on optical tweezers Raman spectroscopy , 2013 .

[31]  S. Nie,et al.  Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules , 2001, Nature Biotechnology.

[32]  M. Lekka,et al.  Biomedical applications of AFM , 2009 .

[33]  C. Wright,et al.  Application of AFM from microbial cell to biofilm. , 2010, Scanning.

[34]  J. Zhang,et al.  Biomedical Applications of Shape-Controlled Plasmonic Nanostructures: A Case Study of Hollow Gold Nanospheres for Photothermal Ablation Therapy of Cancer , 2010 .

[35]  Wenhao Huang,et al.  Mechanical Characterization of Human Red Blood Cells Under Different Osmotic Conditions by Robotic Manipulation With Optical Tweezers , 2010, IEEE Transactions on Biomedical Engineering.

[36]  Christine M. Micheel,et al.  Cell Motility and Metastatic Potential Studies Based on Quantum Dot Imaging of Phagokinetic Tracks , 2002 .

[37]  S. Nie,et al.  Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles. , 2000, Analytical chemistry.

[38]  J Ricardo Arias-Gonzalez,et al.  Exploring mechanochemical processes in the cell with optical tweezers , 2006, Biology of the cell.

[39]  Mattias Goksör,et al.  Optical tweezers applied to a microfluidic system. , 2004, Lab on a chip.

[40]  Xin Xu,et al.  Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy , 2011, Nature communications.

[41]  Nikolai G. Khlebtsov,et al.  Gold Nanoparticles in Biomedical Applications: Recent Advances and Perspectives , 2012 .

[42]  D. Xing,et al.  Sensitive monitoring of RNA transcription levels using a graphene oxide fluorescence switch , 2013 .

[43]  Hui Zhang,et al.  Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. , 2005, Nano letters.

[44]  Robert C. Triulzi,et al.  Immunoasssay based on the antibody-conjugated PAMAM-dendrimer-gold quantum dot complex. , 2006, Chemical communications.

[45]  M. Shim,et al.  Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Robert Langer,et al.  Application of Micro- and Nano-Electromechanical Devices to Drug Delivery , 2006, Pharmaceutical Research.

[47]  Younan Xia,et al.  Gold Nanostructures: Engineering Their Plasmonic Properties for Biomedical Applications , 2007 .

[48]  Arthur Ashkin,et al.  Optical Trapping and Manipulation of Neutral Particles Using Lasers , 1999 .

[49]  May D. Wang,et al.  In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags , 2008, Nature Biotechnology.

[50]  Chunxiang Xu,et al.  Nanostructured ZnO for biosensing applications , 2013 .

[51]  Zhenzhen Chen,et al.  Optical detection of acetylcholine esterase based on CdTe quantum dots , 2013 .

[52]  Yit‐Tsong Chen,et al.  Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation , 2011 .

[53]  Tetsu Tatsuma,et al.  Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips. , 2013, Nanoscale.

[54]  G. Goss,et al.  Atomic force microscopy: a nanoscopic view of microbial cell surfaces. , 2012, Micron.

[55]  Naomi J Halas,et al.  Theranostic nanoshells: from probe design to imaging and treatment of cancer. , 2011, Accounts of chemical research.

[56]  Sudhir Husale Single biomolecule studies using optical tweezers , 2005 .

[57]  A. Kitai Luminescent materials and applications , 2008 .

[58]  Charles M. Lieber,et al.  Three-Dimensional, Flexible Nanoscale Field-Effect Transistors as Localized Bioprobes , 2010, Science.

[59]  Davide Ricci,et al.  Atomic force microscopy : biomedical methods and applications , 2004 .

[60]  H. Xia,et al.  Applications of gold nanorods in biomedical imaging and related fields , 2013 .

[61]  Tamitake Itoh,et al.  Delivering Quantum Dots to Cells: Bioconjugated Quantum Dots for Targeted and Nonspecific Extracellular and Intracellular Imaging , 2010 .

[62]  Zonglai Li,et al.  Tween-modified suspension array for sensitive biomolecular detection , 2013 .

[63]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[64]  S. N. Baker,et al.  Luminescent Carbon Nanodots: Emergent Nanolights , 2011 .

[65]  Quan-mei Sun,et al.  A multiple-labelling method for cells using Au nanoparticles with different shapes , 2013 .

[66]  Xiaohua Huang,et al.  Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. , 2005, Nano letters.

[67]  Selectable infiltrating large hollow core photonic band-gap fiber , 2013 .

[68]  Feng Wang,et al.  Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence , 2006 .

[69]  Dong Sun,et al.  Optical Tweezer Technology , 2011, IEEE Nanotechnology Magazine.

[70]  Xiaohu Gao,et al.  Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. , 2010, Chemical Society reviews.

[71]  Robert Langer,et al.  A BioMEMS review: MEMS technology for physiologically integrated devices , 2004, Proceedings of the IEEE.

[72]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[73]  Peter Nordlander,et al.  Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. , 2011, Nano letters.

[74]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[75]  G. Bazan,et al.  A Highly Emissive Conjugated Polyelectrolyte Vector for Gene Delivery and Transfection , 2012, Advanced materials.

[76]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[77]  Martin Richardson,et al.  Multispectral optical tweezers for molecular diagnostics of single biological cells , 2012, Other Conferences.

[78]  Vincent Noireaux,et al.  In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles , 2002, Science.

[79]  Linhong Deng,et al.  In vitro assay of cytoskeleton nanomechanics as a tool for screening potential anticancer effects of natural plant extract, tubeimoside I on human hepatoma (HepG2) cells , 2013 .

[80]  Zheng Xie,et al.  Highly Luminescent Organosilane‐Functionalized Carbon Dots , 2011 .

[81]  Xiaoling Yang,et al.  Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. , 2012, Chemical communications.

[82]  B. Bhushan MEMS/NEMS and BioMEMS/BioNEMS: Materials, Devices, and Biomimetics , 2010 .

[83]  Shengnian Wang,et al.  AlGaN/GaN heterostructure field transistor for label-free detection of DNA hybridization , 2013 .

[84]  Nathaniel L Rosi,et al.  Near-infrared luminescent lanthanide MOF barcodes. , 2009, Journal of the American Chemical Society.

[85]  J. Toca-Herrera,et al.  The new future of scanning probe microscopy: Combining atomic force microscopy with other surface-sensitive techniques, optical microscopy and fluorescence techniques. , 2009, Nanoscale.

[86]  Jaime Gómez Rivas,et al.  Universal scaling of the figure of merit of plasmonic sensors. , 2011, ACS nano.

[87]  J. Veinot,et al.  Synthesis, surface functionalization, and properties of freestanding silicon nanocrystals. , 2006, Chemical communications.

[88]  Guangdi D. Li,et al.  Effects of vegetation height and density on soil temperature variations , 2013 .

[89]  P. Prasad,et al.  Preparation of Gold Nanoparticles and their Applications in Anisotropic Nanoparticle Synthesis and Bioimaging , 2009 .