A sparse Laplacian in tensor product wavelet coordinates

We construct a wavelet basis on the unit interval with respect to which both the (infinite) mass and stiffness matrix corresponding to the one-dimensional Laplacian are (truly) sparse and boundedly invertible. As a consequence, the (infinite) stiffness matrix corresponding to the Laplacian on the n-dimensional unit box with respect to the n-fold tensor product wavelet basis is also sparse and boundedly invertible. This greatly simplifies the implementation and improves the quantitative properties of an adaptive wavelet scheme to solve the multi-dimensional Poisson equation. The results extend to any second order partial differential operator with constant coefficients that defines a boundedly invertible operator.

[1]  W. Dahmen Stability of Multiscale Transformations. , 1995 .

[2]  Rob P. Stevenson,et al.  Sparse Tensor Product Wavelet Approximation of Singular Functions , 2010, SIAM J. Math. Anal..

[3]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[4]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[5]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[6]  K. Oskolkov,et al.  Schrödinger equation and oscillatory Hilbert transforms of second degree , 1998 .

[7]  Rob Stevenson,et al.  An Adaptive Wavelet Method for Solving High-Dimensional Elliptic PDEs , 2009 .

[8]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[9]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[10]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[11]  I. Weinreich,et al.  Wavelet-Galerkin methods: An adapted biorthogonal wavelet basis , 1993 .

[12]  Rob Stevenson,et al.  Locally Supported, Piecewise Polynomial Biorthogonal Wavelets on Nonuniform Meshes , 2000 .

[13]  Rob P. Stevenson,et al.  An optimal adaptive wavelet method without coarsening of the iterands , 2006, Math. Comput..

[14]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[15]  Wolfgang Dahmen,et al.  Element-by-Element Construction of Wavelets Satisfying Stability and Moment Conditions , 1999, SIAM J. Numer. Anal..