A sparse Laplacian in tensor product wavelet coordinates
暂无分享,去创建一个
[1] W. Dahmen. Stability of Multiscale Transformations. , 1995 .
[2] Rob P. Stevenson,et al. Sparse Tensor Product Wavelet Approximation of Singular Functions , 2010, SIAM J. Math. Anal..
[3] Hans-Joachim Bungartz,et al. Acta Numerica 2004: Sparse grids , 2004 .
[4] H. Beckert,et al. J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .
[5] A. Cohen. Numerical Analysis of Wavelet Methods , 2003 .
[6] K. Oskolkov,et al. Schrödinger equation and oscillatory Hilbert transforms of second degree , 1998 .
[7] Rob Stevenson,et al. An Adaptive Wavelet Method for Solving High-Dimensional Elliptic PDEs , 2009 .
[8] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[9] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[10] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[11] I. Weinreich,et al. Wavelet-Galerkin methods: An adapted biorthogonal wavelet basis , 1993 .
[12] Rob Stevenson,et al. Locally Supported, Piecewise Polynomial Biorthogonal Wavelets on Nonuniform Meshes , 2000 .
[13] Rob P. Stevenson,et al. An optimal adaptive wavelet method without coarsening of the iterands , 2006, Math. Comput..
[14] W. Dahmen. Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.
[15] Wolfgang Dahmen,et al. Element-by-Element Construction of Wavelets Satisfying Stability and Moment Conditions , 1999, SIAM J. Numer. Anal..