Broadband Polarization-Independent Perfect Absorber Using a Phase-Change Metamaterial at Visible Frequencies

We report a broadband polarization-independent perfect absorber with wide-angle near unity absorbance in the visible regime. Our structure is composed of an array of thin Au squares separated from a continuous Au film by a phase change material (Ge2Sb2Te5) layer. It shows that the near perfect absorbance is flat and broad over a wide-angle incidence up to 80° for either transverse electric or magnetic polarization due to a high imaginary part of the dielectric permittivity of Ge2Sb2Te5. The electric field, magnetic field and current distributions in the absorber are investigated to explain the physical origin of the absorbance. Moreover, we carried out numerical simulations to investigate the temporal variation of temperature in the Ge2Sb2Te5 layer and to show that the temperature of amorphous Ge2Sb2Te5 can be raised from room temperature to > 433 K (amorphous-to-crystalline phase transition temperature) in just 0.37 ns with a low light intensity of 95 nW/μm2, owing to the enhanced broadband light absorbance through strong plasmonic resonances in the absorber. The proposed phase-change metamaterial provides a simple way to realize a broadband perfect absorber in the visible and near-infrared (NIR) regions and is important for a number of applications including thermally controlled photonic devices, solar energy conversion and optical data storage.

[1]  S. Ramakrishna,et al.  Design of highly absorbing metamaterials for infrared frequencies. , 2012, Optics express.

[2]  W. J. Wang,et al.  Breaking the Speed Limits of Phase-Change Memory , 2012, Science.

[3]  David M. Fried,et al.  THE DESIGN, FABRICATION AND CHARACTERIZATION OF , 2004 .

[4]  D. Cumming,et al.  A terahertz polarization insensitive dual band metamaterial absorber. , 2011, Optics letters.

[5]  D. R. Chowdhury,et al.  Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. , 2011, Optics letters.

[6]  Iam-Choon Khoo,et al.  Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. , 2011, Optics express.

[7]  Liyuan Liu,et al.  Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies. , 2009, Optics express.

[8]  Matthias Wuttig,et al.  Phase-change materials: Fast transformers. , 2012, Nature materials.

[9]  Yihong Wu,et al.  Fast phase transitions induced by picosecond electrical pulses on phase change memory cells , 2008 .

[10]  Min Qiu,et al.  Nanosecond photothermal effects in plasmonic nanostructures. , 2012, ACS nano.

[11]  Andrew G. Glen,et al.  APPL , 2001 .

[12]  Sang‐Hyun Oh,et al.  Ultrasmooth Patterned Metals for Plasmonics and Metamaterials , 2009, Science.

[13]  Christos Christopoulos,et al.  Customised broadband metamaterial absorbers for arbitrary polarisation. , 2010, Optics express.

[14]  S. Ramanathan,et al.  Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions , 2011 .

[15]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[16]  Ekmel Ozbay,et al.  Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration. , 2011, Optics express.

[17]  N. Zheludev,et al.  Phase-change chalcogenide glass metamaterial , 2009, 0912.4288.

[18]  T. Wágner,et al.  Optical properties and phase change transition in Ge2Sb2Te5 flash evaporated thin films studied by temperature dependent spectroscopic ellipsometry , 2008 .

[19]  Thomas Taubner,et al.  Using low-loss phase-change materials for mid-infrared antenna resonance tuning. , 2013, Nano letters.

[20]  J. Wu,et al.  Temperature Controlled Perfect Absorber Based on Metal-Superconductor-Metal Square Array , 2012, IEEE Transactions on Magnetics.

[21]  Behrad Gholipour,et al.  Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. , 2012, Nature materials.

[22]  G. Shvets,et al.  Wide-angle infrared absorber based on a negative-index plasmonic metamaterial , 2008, 0807.1312.

[23]  Willie J Padilla,et al.  Taming the blackbody with infrared metamaterials as selective thermal emitters. , 2011, Physical review letters.

[24]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[25]  R. Carminati,et al.  Coherent emission of light by thermal sources , 2002, Nature.

[26]  Edward S. Barnard,et al.  Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements , 2009 .

[27]  N. Zheludev,et al.  Metamaterial electro-optic switch of nanoscale thickness , 2010 .

[28]  Matthias Wuttig,et al.  Resonant bonding in crystalline phase-change materials. , 2008, Nature materials.

[29]  T. Cui,et al.  Polarization-independent wide-angle triple-band metamaterial absorber. , 2011, Optics express.

[30]  Willie J Padilla,et al.  Highly-flexible wide angle of incidence terahertz metamaterial absorber , 2008, 0808.2416.

[31]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[32]  Junqiao Wang,et al.  Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency. , 2012, Optics express.

[33]  Huaiwu Zhang,et al.  Dual band terahertz metamaterial absorber: Design, fabrication, and characterization , 2009 .

[34]  Hui Luo,et al.  Numerical study of metamaterial absorber and extending absorbance bandwidth based on multi-square patches , 2011 .

[35]  S. Ramakrishna,et al.  Metamaterial saturable absorber mirror. , 2013, Optics letters.

[36]  Willie J. Padilla,et al.  A dual band terahertz metamaterial absorber , 2010 .

[37]  Willie J Padilla,et al.  Infrared spatial and frequency selective metamaterial with near-unity absorbance. , 2010, Physical review letters.

[38]  M. Kund,et al.  Nanosecond switching in GeTe phase change memory cells , 2009 .

[39]  Federico Capasso,et al.  Ultra-thin perfect absorber employing a tunable phase change material , 2012 .

[40]  Lei Zhang,et al.  Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial , 2013 .

[41]  Sailing He,et al.  Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime , 2010 .

[42]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[43]  J. C. Wu,et al.  A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array , 2012 .

[44]  T. Cui,et al.  Ultrathin multiband gigahertz metamaterial absorbers , 2011 .

[45]  Ata Khalid,et al.  Polarization insensitive, broadband terahertz metamaterial absorber. , 2011, Optics letters.

[46]  Federico Capasso,et al.  Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. , 2013, Optics letters.

[47]  Willie J Padilla,et al.  A metamaterial absorber for the terahertz regime: design, fabrication and characterization. , 2008, Optics express.

[48]  Ping Hui,et al.  Thermal conductivities of evaporated gold films on silicon and glass , 1999 .

[49]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[50]  Martin J Cryan,et al.  Study of tunable negative index metamaterials based on phase-change materials , 2013 .

[51]  T. Yagi,et al.  Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon , 2007 .

[52]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[53]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .